Citation:
ZHOU Yuan, SHAN Yichu, ZHANG Lihua, ZHANG Yukui. Progress in stable isotope labeled quantitative proteomics methods[J]. Chinese Journal of Chromatography,
;2013, 31(6): 496-502.
doi:
10.3724/SP.J.1123.2013.05007
-
Quantitative proteomics is an important research field in post-genomics era. There are two strategies for proteome quantification: label-free methods and stable isotope labeling methods which have become the most important strategy for quantitative proteomics at present. In the past few years, a number of quantitative methods have been developed, which support the fast development in biology research. In this work, we discuss the progress in the stable isotope labeling methods for quantitative proteomics including relative and absolute quantitative proteomics, and then give our opinions on the outlook of proteome quantification methods.
-
-
-
[1]
[1] Bantscheff M, Lemeer S, Savitski M M, et al. Anal Bioanal Chem, 2012, 404(4): 939
- [2]
-
[3]
[3] Bantscheff M, Schirle M, Sweetman G, et al. Anal Bioanal Chem, 2007, 389(4): 1017
-
[4]
[4] Ong S E, Blagoev B, Kratchmarova I, et al. Mol Cell Proteomics, 2002, 1(5): 376
-
[5]
[5] Hsu J L, Huang S Y, Chow N H, et al. Anal Chem, 2003, 75(24): 6843
-
[6]
[6] Ross P L, Huang Y N, Marchese J N, et al. Mol Cell Proteomics, 2004, 3(12): 1154
-
[7]
[7] Koehler C J, Strozynski M, Kozielski F, et al. J Proteome Res, 2009, 8(9): 4333
-
[8]
[8] Oda Y, Huang K, Cross F R, et al. Proc Natl Acad Sci U S A, 1999, 96(12): 6591
-
[9]
[9] DeSouza L V, Taylor A M, Li W, et al. J Proteome Res, 2008, 7(8): 3525
-
[10]
[10] Yao X, Freas A, Ramirez J, et al. Anal Chem, 2001, 73(13): 2836
-
[11]
[11] Ishihama Y, Sato T, Tabata T, et al. Nat Biotechnol, 2005, 23(5): 617
-
[12]
[12] Yu K H, Barry C G, Austin D, et al. J Proteome Res, 2009, 8(3): 1565
-
[13]
[13] Geiger T, Cox J, Ostasiewicz P, et al. Nat Methods, 2010, 7(5): 383
-
[14]
[14] Selbach M, Schwanhausser B, Thierfelder N, et al. Nature, 2008, 455(7209): 58
-
[15]
[15] Schwanhausser B, Gossen M, Dittmar G, et al. Proteomics, 2009, 9(1): 205
-
[16]
[16] Hebert A S, Merrill A E, Bailey D J, et al. Nat Methods, 2013, 10(4): 332
-
[17]
[17] Filiou M D, Varadarajulu J, Teplytska L, et al. Proteomics, 2012, 12(21): 3121
-
[18]
[18] Raijmakers R, Berkers C R, de Jong A, et al. Mol Cell Proteomics, 2008, 7(9): 1755
-
[19]
[19] Raijmakers R, Heck A J, Mohammed S. Mol BioSyst, 2009, 5(9): 992
-
[20]
[20] Wang F, Chen R, Zhu J, et al. Anal Chem, 2010, 82(7): 3007
-
[21]
[21] Boersema P J, Raijmakers R, Lemeer S, et al. Nat Protoc, 2009, 4(4): 484
-
[22]
[22] Qin H, Wang F, Wang P, et al. Chem Commun (Camb), 2012, 48(7): 961
-
[23]
[23] Sun Z, Qin H, Wang F, et al. Anal Chem, 2012, 84(20): 8452
-
[24]
[24] Boersema P J, Aye T T, van Veen T A, et al. Proteomics, 2008, 8(22): 4624
-
[25]
[25] Song C, Wang F, Ye M, et al. Anal Chem, 2011, 83(20): 7755
-
[26]
[26] Hsu J L, Huang S Y, Chen S H. Electrophoresis, 2006, 27(18): 3652
- [27]
-
[28]
[28] Liu Z, Cao J, He Y, et al. J Proteome Res, 2009, 9: 227
- [29]
-
[30]
[30] Yang S J, Nie A Y, Zhang L, et al. J Proteomics, 2012, 75(18): 5797
-
[31]
[31] Qin W, Song Z, Fan C, et al. Anal Chem, 2012, 84(7): 3138
-
[32]
[32] Mirza S P, Greene A S, Olivier M. J Proteome Res, 2008, 7(7): 3042
-
[33]
[33] Thompson A, Schafer J, Kuhn K, et al. Anal Chem, 2003, 75(8): 1895
-
[34]
[34] Dephoure N, Gygi S P. Sci Signal, 2012, 5(217): rs2
-
[35]
[35] Werner T, Becher I, Sweetman G, et al. Anal Chem, 2012, 84(16): 7188
-
[36]
[36] McAlister G C, Huttlin E L, Haas W, et al. Anal Chem, 2012, 84(17): 7469
-
[37]
[37] Xiang F, Ye H, Chen R, et al. Anal Chem, 2010, 82(7): 2817
- [38]
-
[39]
[39] Sohn C H, Lee J E, Sweredoski M J, et al. J Am Chem Soc, 2012, 134(5): 2672
-
[40]
[40] Li S, Zeng D. Chem Commun, 2007(21): 2181
- [41]
-
[42]
[42] Ting L, Rad R, Gygi S P, et al. Nat Methods, 2011, 8(11): 937
-
[43]
[43] Wühr M, Haas W, McAlister G C, et al. Anal Chem, 2012, 84(21): 9214
-
[44]
[44] Koehler C J, Arntzen M O, de Souza G A, et al. Anal Chem, 2013, 85(4): 2478
-
[45]
[45] Koehler C J, Arntzen M O, Strozynski M, et al. Anal Chem, 2011, 83(12): 4775
-
[46]
[46] Nie A Y, Zhang L, Yan G Q, et al. Anal Chem, 2011, 83(15): 6026
-
[47]
[47] Yan W, Luo J, Robinson M, et al. Mol Cell Proteomics, 2011, 10(3): M110.005611
-
[48]
[48] Gerber S A, Rush J, Stemman O, et al. Proc Natl Acad Sci U S A, 2003, 100(12): 6940
-
[49]
[49] Ji C, Sadagopan N, Zhang Y, et al. Anal Chem, 2009, 81(22): 9321
-
[50]
[50] Brun V, Dupuis A, Adrait A, et al. Mol Cell Proteomics, 2007, 6(12): 2139
-
[51]
[51] Hanke S, Besir H, Oesterhelt D, et al. J Proteome Res, 2008, 7(3): 1118
-
[52]
[52] Singh S, Springer M, Steen J, et al. J Proteome Res, 2009, 8(5): 2201
-
[53]
[53] Rivers J, Simpson D M, Robertson D H, et al. Mol Cell Proteomics, 2007, 6(8): 1416
-
[54]
[54] Austin R J, Chang D K, Holstein C A, et al. Proteomics, 2012, 12(13): 2078
-
[55]
[55] Zeiler M, Straube W L, Lundberg E, et al. Mol Cell Proteomics, 2012, 11(3): O111.009613
-
[56]
[56] Rodríguez-Suárez E, Whetton A D. Mass Spectrom Rev, 2013, 32(1): 1
-
[57]
[57] Simpson D M, Beynon R J. Anal Bioanal Chem, 2012, 404(4): 977
-
[1]
-
-
-
[1]
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
-
[2]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[3]
Ling Bai , Limin Lu , Xiaoqiang Wang , Dongping Wu , Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101
-
[4]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[5]
Yu'ang Liu , Yuechao Wu , Junyu Huang , Tao Wang , Xiaohong Liu , Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112
-
[6]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[7]
Yixuan Zhu , Qingtong Wang , Jin Li , Lin Chen , Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090
-
[8]
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
-
[9]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[10]
Yukun Xing , Xiaoyu Xie , Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006
-
[11]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[12]
Xianfei Chen , Wentao Zhang , Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112
-
[13]
Donghui PAN , Yuping XU , Xinyu WANG , Lizhen WANG , Junjie YAN , Dongjian SHI , Min YANG , Mingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468
-
[14]
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
-
[15]
Jia Huo , Jia Li , Yongjun Li , Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075
-
[16]
Hongwei Ma , Fang Zhang , Hui Ai , Niu Zhang , Shaochun Peng , Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107
-
[17]
Jiantao Zai , Hongjin Chen , Xiao Wei , Li Zhang , Li Ma , Xuefeng Qian . The Learning-Centered Problem-Oriented Experimental Teaching. University Chemistry, 2024, 39(4): 40-47. doi: 10.3866/PKU.DXHX202309023
-
[18]
Yang Liu , Peng Chen , Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085
-
[19]
Weitai Wu , Laiying Zhang , Yuan Chun , Liang Qiao , Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031
-
[20]
Tianyu Feng , Guifang Jia , Peng Zou , Jun Huang , Zhanxia Lü , Zhen Gao , Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(197)
- HTML views(10)