Citation: ZHOU Yuan, SHAN Yichu, ZHANG Lihua, ZHANG Yukui. Progress in stable isotope labeled quantitative proteomics methods[J]. Chinese Journal of Chromatography, ;2013, 31(6): 496-502. doi: 10.3724/SP.J.1123.2013.05007 shu

Progress in stable isotope labeled quantitative proteomics methods

  • Corresponding author: ZHANG Lihua, 
  • Received Date: 2 May 2013

    Fund Project: 国家重大科学计划"蛋白质定量新方法及相关技术研究"项目(2012CB910604). (2012CB910604)

  • Quantitative proteomics is an important research field in post-genomics era. There are two strategies for proteome quantification: label-free methods and stable isotope labeling methods which have become the most important strategy for quantitative proteomics at present. In the past few years, a number of quantitative methods have been developed, which support the fast development in biology research. In this work, we discuss the progress in the stable isotope labeling methods for quantitative proteomics including relative and absolute quantitative proteomics, and then give our opinions on the outlook of proteome quantification methods.
  • 加载中
    1. [1]

      [1] Bantscheff M, Lemeer S, Savitski M M, et al. Anal Bioanal Chem, 2012, 404(4): 939  

    2. [2]

      [2] Ong S E, Mann M. Nat Chem Biol, 2005, 1(5): 252  

    3. [3]

      [3] Bantscheff M, Schirle M, Sweetman G, et al. Anal Bioanal Chem, 2007, 389(4): 1017  

    4. [4]

      [4] Ong S E, Blagoev B, Kratchmarova I, et al. Mol Cell Proteomics, 2002, 1(5): 376  

    5. [5]

      [5] Hsu J L, Huang S Y, Chow N H, et al. Anal Chem, 2003, 75(24): 6843  

    6. [6]

      [6] Ross P L, Huang Y N, Marchese J N, et al. Mol Cell Proteomics, 2004, 3(12): 1154  

    7. [7]

      [7] Koehler C J, Strozynski M, Kozielski F, et al. J Proteome Res, 2009, 8(9): 4333  

    8. [8]

      [8] Oda Y, Huang K, Cross F R, et al. Proc Natl Acad Sci U S A, 1999, 96(12): 6591  

    9. [9]

      [9] DeSouza L V, Taylor A M, Li W, et al. J Proteome Res, 2008, 7(8): 3525  

    10. [10]

      [10] Yao X, Freas A, Ramirez J, et al. Anal Chem, 2001, 73(13): 2836  

    11. [11]

      [11] Ishihama Y, Sato T, Tabata T, et al. Nat Biotechnol, 2005, 23(5): 617  

    12. [12]

      [12] Yu K H, Barry C G, Austin D, et al. J Proteome Res, 2009, 8(3): 1565  

    13. [13]

      [13] Geiger T, Cox J, Ostasiewicz P, et al. Nat Methods, 2010, 7(5): 383  

    14. [14]

      [14] Selbach M, Schwanhausser B, Thierfelder N, et al. Nature, 2008, 455(7209): 58  

    15. [15]

      [15] Schwanhausser B, Gossen M, Dittmar G, et al. Proteomics, 2009, 9(1): 205  

    16. [16]

      [16] Hebert A S, Merrill A E, Bailey D J, et al. Nat Methods, 2013, 10(4): 332  

    17. [17]

      [17] Filiou M D, Varadarajulu J, Teplytska L, et al. Proteomics, 2012, 12(21): 3121  

    18. [18]

      [18] Raijmakers R, Berkers C R, de Jong A, et al. Mol Cell Proteomics, 2008, 7(9): 1755  

    19. [19]

      [19] Raijmakers R, Heck A J, Mohammed S. Mol BioSyst, 2009, 5(9): 992  

    20. [20]

      [20] Wang F, Chen R, Zhu J, et al. Anal Chem, 2010, 82(7): 3007  

    21. [21]

      [21] Boersema P J, Raijmakers R, Lemeer S, et al. Nat Protoc, 2009, 4(4): 484  

    22. [22]

      [22] Qin H, Wang F, Wang P, et al. Chem Commun (Camb), 2012, 48(7): 961  

    23. [23]

      [23] Sun Z, Qin H, Wang F, et al. Anal Chem, 2012, 84(20): 8452  

    24. [24]

      [24] Boersema P J, Aye T T, van Veen T A, et al. Proteomics, 2008, 8(22): 4624  

    25. [25]

      [25] Song C, Wang F, Ye M, et al. Anal Chem, 2011, 83(20): 7755  

    26. [26]

      [26] Hsu J L, Huang S Y, Chen S H. Electrophoresis, 2006, 27(18): 3652  

    27. [27]

      [27] Shakey Q, Bates B, Wu J. Anal Chem, 2010, 82(18): 7722  

    28. [28]

      [28] Liu Z, Cao J, He Y, et al. J Proteome Res, 2009, 9: 227

    29. [29]

      [29] Zhang S, Liu X, Kang X, et al. Talanta, 2012, 91: 122  

    30. [30]

      [30] Yang S J, Nie A Y, Zhang L, et al. J Proteomics, 2012, 75(18): 5797  

    31. [31]

      [31] Qin W, Song Z, Fan C, et al. Anal Chem, 2012, 84(7): 3138  

    32. [32]

      [32] Mirza S P, Greene A S, Olivier M. J Proteome Res, 2008, 7(7): 3042  

    33. [33]

      [33] Thompson A, Schafer J, Kuhn K, et al. Anal Chem, 2003, 75(8): 1895  

    34. [34]

      [34] Dephoure N, Gygi S P. Sci Signal, 2012, 5(217): rs2

    35. [35]

      [35] Werner T, Becher I, Sweetman G, et al. Anal Chem, 2012, 84(16): 7188  

    36. [36]

      [36] McAlister G C, Huttlin E L, Haas W, et al. Anal Chem, 2012, 84(17): 7469  

    37. [37]

      [37] Xiang F, Ye H, Chen R, et al. Anal Chem, 2010, 82(7): 2817  

    38. [38]

      [38] Zhang J, Wang Y, Li S. Anal Chem, 2010, 82(18): 7588  

    39. [39]

      [39] Sohn C H, Lee J E, Sweredoski M J, et al. J Am Chem Soc, 2012, 134(5): 2672  

    40. [40]

      [40] Li S, Zeng D. Chem Commun, 2007(21): 2181

    41. [41]

      [41] Zeng D, Li S. Bioorg Med Chem Lett, 2009, 19(7): 2059  

    42. [42]

      [42] Ting L, Rad R, Gygi S P, et al. Nat Methods, 2011, 8(11): 937  

    43. [43]

      [43] Wühr M, Haas W, McAlister G C, et al. Anal Chem, 2012, 84(21): 9214

    44. [44]

      [44] Koehler C J, Arntzen M O, de Souza G A, et al. Anal Chem, 2013, 85(4): 2478  

    45. [45]

      [45] Koehler C J, Arntzen M O, Strozynski M, et al. Anal Chem, 2011, 83(12): 4775  

    46. [46]

      [46] Nie A Y, Zhang L, Yan G Q, et al. Anal Chem, 2011, 83(15): 6026  

    47. [47]

      [47] Yan W, Luo J, Robinson M, et al. Mol Cell Proteomics, 2011, 10(3): M110.005611

    48. [48]

      [48] Gerber S A, Rush J, Stemman O, et al. Proc Natl Acad Sci U S A, 2003, 100(12): 6940  

    49. [49]

      [49] Ji C, Sadagopan N, Zhang Y, et al. Anal Chem, 2009, 81(22): 9321  

    50. [50]

      [50] Brun V, Dupuis A, Adrait A, et al. Mol Cell Proteomics, 2007, 6(12): 2139  

    51. [51]

      [51] Hanke S, Besir H, Oesterhelt D, et al. J Proteome Res, 2008, 7(3): 1118  

    52. [52]

      [52] Singh S, Springer M, Steen J, et al. J Proteome Res, 2009, 8(5): 2201  

    53. [53]

      [53] Rivers J, Simpson D M, Robertson D H, et al. Mol Cell Proteomics, 2007, 6(8): 1416  

    54. [54]

      [54] Austin R J, Chang D K, Holstein C A, et al. Proteomics, 2012, 12(13): 2078  

    55. [55]

      [55] Zeiler M, Straube W L, Lundberg E, et al. Mol Cell Proteomics, 2012, 11(3): O111.009613

    56. [56]

      [56] Rodríguez-Suárez E, Whetton A D. Mass Spectrom Rev, 2013, 32(1): 1  

    57. [57]

      [57] Simpson D M, Beynon R J. Anal Bioanal Chem, 2012, 404(4): 977  

  • 加载中
    1. [1]

      Chenghe Yang Yi Lü Rui Liu . The Rise to Fame of Digital PCR. University Chemistry, 2025, 40(4): 340-345. doi: 10.12461/PKU.DXHX202406111

    2. [2]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    3. [3]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    4. [4]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    5. [5]

      Ling Bai Limin Lu Xiaoqiang Wang Dongping Wu Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101

    6. [6]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    7. [7]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    8. [8]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    9. [9]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    10. [10]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    11. [11]

      Wenwen Zhang Peichao Zhang Conghao Gai Xiaoyun Chai Yan Zou Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076

    12. [12]

      Zongyuan Chen ChunSheng Shi Yiwen Li Ganlin Zu Qiang Jin Haishan Wang Fujun Wang Dekun Yan Zhijun Guo Wangsuo Wu . Measurement of Uranium Isotopes in Environmental Water Samples by Alpha-Spectroscopy: Design of an Undergraduate Radiochemistry Experiment. University Chemistry, 2025, 40(4): 353-358. doi: 10.12461/PKU.DXHX202406103

    13. [13]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    14. [14]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    15. [15]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    16. [16]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    17. [17]

      Yujing Chen Hongqun Ouyang Dan Zhao Yanyan Chu Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120

    18. [18]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    19. [19]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    20. [20]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

Metrics
  • PDF Downloads(0)
  • Abstract views(394)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return