Citation:
ZHANG Qianqian, KANG Jingwu. An assay for anti-factor Xa activity of low molecular weight heparins by high performance liquid size exclusion chromatography[J]. Chinese Journal of Chromatography,
;2013, 31(7): 684-690.
doi:
10.3724/SP.J.1123.2013.04029
-
The "gold standard" assay for monitoring low molecular weight heparins (LMWHs) activity is the chromogenic-based anti-factor Xa assay. The methodology of an anti-factor Xa assay is that LMWH is added to a known amount of excess factor Xa and excess antithrombin. It will bind to antithrombin and form a triplet complex with factor Xa, inhibiting the activity of factor Xa. However, the residual factor Xa can still hydrolyze chromogenic peptide substrate, releasing the chromophore for photometric detection. The absorbance is inversely proportional to the amount of heparin/LMWH. The results are given in anticoagulant concentration in units/mL of anti-factor Xa, such that high values indicate high levels of anticoagulation and low values indicate low levels of anticoagulation. Herein, a novel assay method for anti-FXa activity of LMWHs using high performance liquid size exclusion chromatography (SEC) is reported, in which antithrombin Ⅲ (ATⅢ) was diluted by the buffer solution contained LMWHs. Subsequently, exogenous FXa and p-nitroaniline coupled peptide substrate were added and incubated for a period, separately. The resulting mixture was separated based on size by SEC, and the free chromophore p-nitroaniline can be detected at an absorption maximum of 385 nm without interference from the absorbance of p-nitroanilide substrates. Moreover, the measurements are not influenced by sample opacity or turbidity, so it is possible to test various complex samples, such as plasma. The assay is robust, sensitive, and cost effective.
-
-
- [1]
-
[2]
[2] Hirsh J, Raschke R. Chest, 2004, 126(Suppl 3): 188S
-
[3]
[3] Baglin T, Barrowcliffe T W, Cohen A, et al. Br J Haematol, 2006, 133(1): 19
-
[4]
[4] Anand S, Ginsberg J S, Kearon C, et al. Arch Intern Med, 1996, 156(15): 1677
-
[5]
[5] Martindale S J, Shayevitz J R, D'Errico C. J Cardiothorac Vasc Anesth, 1996, 10(4): 458
-
[6]
[6] Hammerstingl C. Cardiovasc Hematol Agents Med Chem, 2008, 6(4): 282
-
[7]
[7] Teien A N, Lie M, Abildgaard U. Thromb Res, 1976, 8(3): 413
-
[8]
[8] Witt I. Eur J Clin Chem Clin Biochem, 1991, 29(6): 355
-
[9]
[9] Harris L F, O'Brien A, Castro-Lopez V, et al. Thromb Res, 2011, 128(6): e166
-
[10]
[10] Harris L F, Castro-Lopez V, Jenkins P V, et al. Thromb Res, 2011, 128(6): e125
-
[11]
[11] Harris L F, Castro-Lopez V, Hammadi N, et al. Talanta, 2010, 81(4/5): 1725
-
[12]
[12] Manley S A, Gailer J. Expert Rev Proteomics, 2009, 6(3): 251
-
[13]
[13] The United States Pharmacopeial Convention. Revision Bulletin, Enoxaparin, 2008
-
[14]
[14] Pharmacopoeia Commission of the People's Republic of China. Pharmacopoeia of the People's Republic of China. Part 3. Beijing: Chemical Industry Press (国家药典委员会. 中华人民共和国药典. 三部. 北京: 化学工业出版社), 2005: Appendix 166
-
[15]
[15] Castro-Lopez V, Harris L F, O'Donnell J S, et al. Anal Bioanal Chem, 2011, 399(2): 691
-
[16]
[16] Clark N P. Thromb Res, 2008, 123(Suppl 1): S58
-
[17]
[17] Greaves M. Thromb Haemost, 2002, 87(1): 163
-
-
-
[1]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[2]
Jingming Li , Bowen Ding , Nan Li , Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078
-
[3]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[4]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[5]
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031
-
[6]
Wenkai Chen , Yunjia Shen , Xiangmeng Kong , Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018
-
[7]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[8]
Zehua Zhang , Haitao Yu , Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042
-
[9]
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
-
[10]
Xuanzhu Huo , Yixi Liu , Qiyu Wu , Zhiqiang Dong , Chanzi Ruan , Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095
-
[11]
Laiying Zhang , Yinghuan Wu , Yazi Yu , Yecheng Xu , Haojie Zhang , Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126
-
[12]
Yang YANG , Pengcheng LI , Zhan SHU , Nengrong TU , Zonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440
-
[13]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[14]
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
-
[15]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[16]
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
-
[17]
Wenbing Hu , Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015
-
[18]
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
-
[19]
Zhifang SU , Zongjie GUAN , Yu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290
-
[20]
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(201)
- HTML views(27)