Citation:
WANG Yong, GENG Qing, ZUO Yuexian, ZHOU Xinwen, LIAN Hongzhen, PAN Guangwen. Determination of hydrazine ion in explosion dust of liquid explosive by ion chromatography[J]. Chinese Journal of Chromatography,
;2013, 31(9): 920-923.
doi:
10.3724/SP.J.1123.2013.04025
-
A method for the determination of hydrazine ion in explosion dust of liquid explosive has been established by ion chromatography. The hydrazine ion in an explosion dust sample was extracted with deionized water by sonification and centrifugation. The large molecules and solid particles in supernatant were removed by an OnGuardⅡ RP column and a 0.22 μm filtration membrane, respectively. The filtrate was separated on an IonPac CS-12A column with isocratic elution of 5 mmol/L methanesulfonic acid (MSA). Then 0.1 mol/L NaOH solution was post-column added and the resultant solution was detected by an ampere detector with golden electrode. The results showed that, the calibration curve was linear in the range of 0.02-2.0 mg/L with a correlation coefficient (r2) of 0.9997. The limits of detection (LOD, S/N=3) and quantification (LOQ, S/N=10) of hydrazine were 5.0 μg/L and 16.6 μg/L, respectively. The recoveries ranged between 95.4% and 99.1% with the relative standard deviations (RSDs, n=5) of 2.1%-3.3%. The hydrazine content in a real explosion dust sample of liquid explosive was 10.3 mg/kg by this method. The method is simple, accurate, and suitable for the quantitative detection of hydrazine ions in explosion dust of liquid explosive, and the method can meet the needs of the criminal evidence identification work.
-
-
-
[1]
[1] Ding W X, Ji Y P, Wu T F, et al. Explosive Materials (丁伟兴, 姬月萍, 吴腾芳, 等. 爆破器材), 2010, 39(1): 32
-
[2]
[2] Li J H, Jin S H, Shi Y S. Energetic Materials (李进华, 金韶华, 史彦山. 含能材料), 2008, 13(4): 235
-
[3]
[3] Su X, Xiao M, Wang Y J, et al. Occupation and Health (苏旭, 肖梅, 王英杰, 等. 职业与健康), 2009, 25(4): 372
-
[4]
[4] Lu Y F, Sheng J F, Wang X C. Chinese Journal of Health Laboratory Technology (陆幽芳, 盛娟芬, 汪锡灿. 中国卫生检验杂志), 2005, 15(6): 666
-
[5]
[5] Yang B, Liu Z J, Yan Z G, et al. Chemical Analysis and Meterage (杨波, 刘召金, 严治国, 等. 化学分析计量), 2008, 17(3): 32
-
[6]
[6] Sun M J, Bai L, Liu D Q. J Pharm Biomed Anal, 2009, 49(2): 529
-
[7]
[7] Zhou Y S, Li S Y, Han D S, et al. Chinese Journal of Analysis Laboratory (周延生, 李赛钰, 韩东升, 等. 分析试验室), 2008, 27(3): 84
-
[8]
[8] HG/T 3259-2004
-
[9]
[9] Tan D M, Zhang Y S, Duan X R. Zhejiang Chemical Industry (谭冬梅, 张育胜, 段仙绒. 浙江化工), 2011, 42(9): 19
-
[10]
[10] Shabani A M H, Dadfarnia S, Dehghan K. Bull Korean Chem Soc, 2004, 25(2): 213
- [11]
-
[12]
[12] George M, Nagaraja K S, Blasubramanran N. Indian J Chem Section A: Inorg Bio-inorg Phys Theor Anal Chem, 2007, 46(10): 1621
-
[13]
[13] Rodin I A, Smolenkov A D, Shpak A V, et al. Russian J Phys Chem A, 2007, 81(3): 390
- [14]
-
[1]
-
-
-
[1]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[2]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[3]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[4]
Mei Yan , Rida Feng , Yerdos·Tohtarkhan , Biao Long , Li Zhou , Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103
-
[5]
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
-
[6]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
-
[7]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[8]
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
-
[9]
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
-
[10]
Yongmin Zhang , Shuang Guo , Mingyue Zhu , Menghui Liu , Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026
-
[11]
Dongju Zhang , Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032
-
[12]
Jingming Li , Bowen Ding , Nan Li , Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078
-
[13]
Tao Yang , Kaijiao Duan , Siyu Li , Jing Wei , Qingdi Yang , Qian Wang . A Comprehensive and Innovative Chemical Experimental Teaching: Extraction and Identification of Tea Polyphenols from Pu'er Tea and the Application in Hand Cream Making. University Chemistry, 2024, 39(8): 270-275. doi: 10.3866/PKU.DXHX202312040
-
[14]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[15]
Wanqun Hu , Pingping Zhu , Yuan Zheng , Wanqun Zhang , Wei Shao , Hong Wu , Qiang Zhou , Kaiping Yang , Xiang Sheng . Design and Practice of Ideological and Political Case Study in Instrumental Analysis Experiment Course: the Extraction and Structural Identification of Artemisinin. University Chemistry, 2024, 39(2): 203-207. doi: 10.3866/PKU.DXHX202310062
-
[16]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[17]
Shui Hu , Houjin Li , Zhenming Zang , Lianyun Li , Rong Lai . Integration of Science and Education Promotes the Construction of Undergraduate-to-Master’s Integration Experimental Courses: A Case Study on the Extraction, Separation and Identification of Artemisinin from Artemisia annua. University Chemistry, 2024, 39(4): 314-321. doi: 10.3866/PKU.DXHX202310063
-
[18]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[19]
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031
-
[20]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(396)
- HTML views(66)