Citation:
LIN Hui, XU Chunxiang, YAN Chunrong, ZHANG Zheng, WANG Suilou. Determination of congo red in beef by high performance liquid chromatography-tandem quadrupole time of flight mass spectrometry and ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry[J]. Chinese Journal of Chromatography,
;2013, 31(9): 914-919.
doi:
10.3724/SP.J.1123.2013.03043
-
A method was developed for the determination of congo red in beef. The analyte was identified by high performance liquid chromatography-tandem quadrupole time of flight mass spectrometry (LC-QTOF MS) and quantitatively determined by ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry. After purified by liquid-liquid extraction, the congo red in the beef sample was separated on an Agilent ZORBAX Eclipse Plus C18 Rapid Resolution HD UPLC column (50 mm×2.1 mm, 1.8 μm) HPLC, using 95% (volume percentage) methanol as the mobile phase at 0.2 mL/min. The detection was performed on an AB 4000+ triple quadrupole mass spectrometer utilizing electrospray ionization (ESI) interface operated in negative ion mode and multiple-reaction monitoring (MRM) mode. The results showed that the linear range of congo red mass concentration was 0.03-1 mg/L with the correlation coefficient of 0.9998. The method had a good precision with the RSDs lower than 5% and the recoveries ranging from 88% to 91%. The limit of detection (LOD) of congo red was 0.01 mg/L. With good reproducibility, the method is simple, fast and effective for the determination of the illegally added congo red in beef and other meat products.
-
-
-
[1]
[1] ChemBlink. Congo Red.[2012-10-20]. http://www.chemblink.com/products/573-58-0C.htm
-
[2]
[2] Wikimedia Foundation. Congo Red.[2012-10-20]. http://en.wikipedia.org/wiki/Congo_red
-
[3]
[3] Lachheb H, Puzenat E, Houas A, et al. Appl Catal B: Environ, 2002, 39(1): 75
-
[4]
[4] Bali U, Satalkaya E, Sengül F. J Haz Mat, 2004, 114: 159
-
[5]
[5] Cao Y Q, Hu Y Y, Sun J, et al. Bioelechem, 2010, 79(1): 71
-
[6]
[6] Steensma D P. Arch Pathol Lab Med, 2001, 125 (2): 250
- [7]
-
[8]
[8] Frid P, Anisimov S V, Popovic N. Brain Res Rev, 2007, 53(1): 135
-
[9]
[9] Ma W X, Qian B H, Yang X J, et al. Physical Testing and Chemical Analysis Part B: Chemical Analysis (马卫兴, 钱保华, 杨绪杰, 等. 理化检验:化学分册), 2005, 47(7): 492
-
[10]
[10] Shi F. Fujian Analysis and Testing (侍芳. 福建分析测试), 2010, 19(2): 60
-
[11]
[11] He F P, Shi F, Pan L T. Environmental Pollution and Protection (贺锋萍, 侍芳, 潘碌亭. 环境污染及防治), 2011, 33(4): 71
-
[12]
[12] Ling R, Hu W Y, Qiao L. Journal of Instrumental Analysis (凌睿, 胡文彦, 乔玲. 分析测试学报), 2012, 31(6): 730
- [13]
-
[14]
[14] Zhao Y S, Chu X G, Wang H, et al. Journal of Food Safety and Quality (赵延胜, 储晓刚, 王菡, 等. 食品安全质量检测学报), 2011, 2(2): 59
-
[1]
-
-
-
[1]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[2]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[3]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[4]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[5]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036
-
[6]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[7]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[8]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[9]
Yutong Dong , Huiling Xu , Yucheng Zhao , Zexin Zhang , Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022
-
[10]
Gaoyan Chen , Chaoyue Wang , Juanjuan Gao , Junke Wang , Yingxiao Zong , Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011
-
[11]
Yingying Chen , Di Xu , Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057
-
[12]
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
-
[13]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[14]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[15]
Jingming Li , Bowen Ding , Nan Li , Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078
-
[16]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[17]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
-
[18]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[19]
Haiyang Zhang , Yanzhao Dong , Haojie Li , Ruili Guo , Zhicheng Zhang , Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035
-
[20]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(362)
- HTML views(46)