Citation: LI Ying, WU Ya-Feng, YUAN Liang, LIU Song-Qin. Application of Atom Transfer Radical Polymerization in Biosensing[J]. Chinese Journal of Analytical Chemistry, ;2012, 40(12): 1797-1802. doi: 10.3724/SP.J.1096.2012.20531 shu

Application of Atom Transfer Radical Polymerization in Biosensing

  • Corresponding author: LIU Song-Qin, 
  • Received Date: 23 May 2012
    Available Online: 26 September 2012

    Fund Project: 本文系国家自然科学基金资助项目(No.20875013) (No.20875013)

  • Atom transfer radical polymerization (ATRP) is a new class of signal amplification method. The polymer growth results in local accumulation of monomers to form long-chain polymers. The growth of long chain polymeric materials provides excess active groups for electroactive or photoactive molecules coupling, which in turn significantly increases the loading of signal molecules and enhanced detection sensitivity. This review introduced the mechanism of ATRP, summarized the recent application of ATRP in biosensing. Particularly, future study and prospect were envisioned.
  • 加载中
    1. [1]

      1 Matyjaszewski K, Xia J H. Chem. Rev., 2001, 101(9): 2921-2990

    2. [2]

      2 Srivastava A, Mishra V, Singh P, Kumar R. J. Appl. Polym. Sci., 2012, 126(2): 395-407

    3. [3]

      3 Bunha A K, Mangadlao J, Felipe M J, Pangilinan K, Advincula R. Macromol. Rapid. Comm., 2012, 33(14): 1214-1219

    4. [4]

      4 Gilroy J B, Lunn D J, Patra S K, Winnik M A, Manners I. Macromolecules, 2012, 45(14): 5906-5815

    5. [5]

      5 Yao Z L, Tam K C. Polymer, 2012, 53(16): 3446-3453

    6. [6]

      6 Nguyen A T, Baggerman J, Paulusse J M J, Zuilhof H, van Rijn C J M. Langmuir, 2012, 28(1): 604-610

    7. [7]

      7 Nguyen A T, Baggerman J, Paulusse J M J, van Rijn C J M, Zuilhof H. Langmuir, 2011, 27(6): 2587-2594

    8. [8]

      8 Zhang Z B, Yuan S J, Zhu X L, Neoh K G, Kang E T. Biosens. Bioelectron., 2010, 25(5): 1102-1108

    9. [9]

      9 Qian H, He L.Anal. Chem., 2009, 81(23): 9824-9827

    10. [10]

      10 Wong A K Y, Krull U J. Anal. Chim. Acta, 2009, 639(1-2): 1-12

    11. [11]

      11 Lou X H, Lewis M S, He L. Anal. Chem., 2005, 77(15): 4698-4705

    12. [12]

      12 Lou X H, He L. Langmuir, 2006, 22(6): 2640-2646

    13. [13]

      13 Wang J S, Matyjaszewski K. J. Am. Chem. Soc., 1995, 117(20): 5614-5615

    14. [14]

      14 Matyjaszewski K. Curr. Org. Chem., 2002, 6(2): 67-82

    15. [15]

      15 Matyjaszewski K, Ziegler M J, Arehart S V, Pakula T. J. Phys. Org. Chem., 2000, 13(12): 775-786

    16. [16]

      16 Lutz J F, Neugebauer D, Matyjaszewski K. J. Am. Chem. Soc., 2003, 125(23): 6986-6993

    17. [17]

      17 Lutz J F, Kirci B, Matyjaszewski K. Macromolecules, 2003, 36(9): 3136-3145

    18. [18]

      18 Hong S C, Lutz J F, Inoue Y, Strissel C, Nuyken O, Matyjaszewski K. Macromolecules, 2003, 36(4): 1075-1082

    19. [19]

      19 Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H. Chem. Rev., 2001, 101(12): 3747-3792

    20. [20]

      20 Hong S C, Neugebauer D, Inoue Y, Lutz J F, Matyjaszewski K. Macromolecules, 2003, 36(1): 27-35

    21. [21]

      21 Pitsikalis M, Pispas S, Mays J W, Hadjichristidis N. Blockcopolymers Polyelectrolytes Biodegradation, 1998, 135: 1-137

    22. [22]

      22 Borner H G, Duran D, Matyjaszewski K, da Silva M, Sheiko S S. Macromolecules, 2002, 35(9): 3387-3394

    23. [23]

      23 Gaynor S G, Edelman S, Matyjaszewski K. Macromolecules, 1996, 29(3): 1079-1081

    24. [24]

      24 Matyjaszewski K, Gaynor S G, Kulfan A, Muller A H E. Macromolecules, 1997, 30(17): 5192-5194

    25. [25]

      25 Matyjaszewski K, Gaynor S G, Muller A H E. Macromolecules, 1997, 30(23): 7034-7041

    26. [26]

      26 Matyjaszewski K, Gaynor S G. Macromolecules, 1997, 30(23): 7042-7049

    27. [27]

      27 Matyjaszewski K, Pyun J, Gaynor S G. Macromol. Rapid. Comm., 1998, 19(12): 665-670

    28. [28]

      28 Matyjaszewski K. Polym. Int., 2003, 52(10): 1559-1565

    29. [29]

      29 Beers K L, Gaynor S G, Matyjaszewski K, Sheiko S S, Moller M. Macromolecules, 1998, 31(26): 9413-9415

    30. [30]

      30 Luzinov I, Minko S, Tsukruk V V. Prog. Polym. Sci., 2004, 29(7): 635-698

    31. [31]

      31 Pyun J, Kowalewski T, Matyjaszewski K. Macromol. Rapid. Comm., 2003, 24(18): 1043-1059

    32. [32]

      32 Liu Y, Cheng Q. Anal. Chem., 2012, 84(7): 3179-3186

    33. [33]

      33 Liu Y, Dong Y, Jauw J, Linman M J, Cheng Q. Anal. Chem., 2010, 82(9): 3679-3685

    34. [34]

      34 Qian H, He, L. Sensors and Actuators B, 2010, 150(2): 594-600

    35. [35]

      35 He P, Zheng W M,Tucker E Z, Gorman C B, He L. Anal. Chem., 2008, 80(10): 3633-3639

    36. [36]

      36 Wang J S, Matyjaszewski K. J. Am. Chem. Soc., 1995, 117(20): 5614-5615

    37. [37]

      37 Chen J K, Li J Y. Sensors and Actuators B, 2010, 150(1): 314-320

    38. [38]

      38 Lou X H, He L. Langmuir, 2006, 22(6): 2640-2646

    39. [39]

      39 Zheng W M, He L. Anal. Bioanal. Chem., 2010, 397(6): 2261-2270

    40. [40]

      40 Wu Y F, Liu S Q, He L. Anal. Chem., 2009, 81(16): 7015-7021

    41. [41]

      41 Wu Y F, Liu S Q, He L. Analyst, 2011, 136(12): 2558-2563

    42. [42]

      42 Wu Y F, Liu S Q, He L. Biosens. Bioelectron., 2010, 26(3): 970-975

    43. [43]

      43 Wu Y F, Shi H Y, Yuan L A, Liu S Q. Chem. Commun., 2010, 46(41): 7763-7765

    44. [44]

      44 Yuan LA, Wu Y F, Shi H Y, Liu S Q. Chem. Eur. J., 2011, 17(3): 976-983

    45. [45]

      45 Shi H Y,Yuan L A, Wu Y F, Liu S Q. Biosens. Bioelectron., 2011, 26(9): 3788-3793

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    3. [3]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    4. [4]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    5. [5]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    6. [6]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    7. [7]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    8. [8]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    9. [9]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    10. [10]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    11. [11]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    14. [14]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    15. [15]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    16. [16]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    17. [17]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    18. [18]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(0)
  • Abstract views(429)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return