Citation: HU Yue, WANG Xue-Jiao, LI Heng, GAO Wen-Yun. Determination of Steady-State Kinetic Parameters of 1-Deoxy-D-xylulose- 5-phosphate Synthase by Pre-column Derivatization High Performance Liquid Chromatography Using 2,4-Dinitrophenylhydrazine as Derivative Reagent[J]. Chinese Journal of Analytical Chemistry, ;2012, 40(12): 1859-1864. doi: 10.3724/SP.J.1096.2012.20447 shu

Determination of Steady-State Kinetic Parameters of 1-Deoxy-D-xylulose- 5-phosphate Synthase by Pre-column Derivatization High Performance Liquid Chromatography Using 2,4-Dinitrophenylhydrazine as Derivative Reagent

  • Corresponding author: GAO Wen-Yun, 
  • Received Date: 27 April 2012
    Available Online: 3 July 2012

    Fund Project: 本文系国家自然科学基金项目(No.21172179) (No.21172179)西北大学研究生创新基金(No.10YYB02)资助 (No.10YYB02)

  • Carbonyl containing compounds can normally be determined by high performance liquid chromatography (HPLC) using pre-column derivatization with 2,4-dinitrophenylhydrazine (DNPH). Using this method, the steady-state kinetic parameters of 1-deoxy-D-xylulose-5-phosphate synthase (DXS) were measured. First, the enzymatic product 1-deoxy-D-xylulose-5-phosphate (DXP) was dephosphorylated by alkaline phosphatase, then the product 1-deoxy-D-xylulose (DX) was derived with DNPH in acidic solution to give the corresponding hydrazones which was subsequently determined by HPLC. The optimum derivatization conditions were as follows: acidity 1.5% perchloric acid, reaction temperature 37℃, reaction time of 60 min, molar ratio of DNPH to DXP 6:1. The HPLC was run with a linear gradient of methanol-water solvent system: 0 min, 40% methanol; 17 min, 80% methanol; 18 min, 40% methanol; 20 min, 40% methanol. The method has a detection limit of 1 mg/L for DXP and the linear correlation coefficient in the range of 0.005-1 g/L was 0.999. The relative standard deviation is less than 5.0%. The steady-state kinetic parameters of DXS determined with this method are identical with the reported data.
  • 加载中
    1. [1]

      1 Eisenreich W. Bacher A, Arigoni D, Rohdich F. Cell. Mol. Life Sci., 2004, 61(5): 1401-1426

    2. [2]

      2 Rohmer M. In Comprehensive Natural Products II, Chemistry and Biology, Mander L, Liu H W. Eds. Elsevier, 2010, 1: 517-555

    3. [3]

      3 Hunter W. J. Biol. Chem., 2007, 282(30): 21573-21577

    4. [4]

      4 JIN Rong, ZHU Chang-Qing, XU Chang-Jie. Chinese J. Cell Biol., 2007, 29(9): 706-712

    5. [5]

      金 蓉, 朱长青, 徐昌杰. 细胞生物学杂志, 2007, 29(9): 706-712

    6. [6]

      5 Fazia B, Naima H, Odile M, Franoise S, Michel H, Paul M V, Philippe L. Eur. J. Pharmacol., 2004, 485(3): 227-234

    7. [7]

      6 Lange B M, Wildung M R, David M, Rodney C. Proc. Natl. Acad. Sci. USA, 1998, 95(5): 2100-2104

    8. [8]

      7 Querol J, Besumbes O, Lois L M, Boronat A, Imperial S. Anal. Biochem., 2001, 296(9): 101-105

    9. [9]

      8 Chahed K, Oudin A, Guivarc'h N, Guivarc'h N, Hamdi S, Chénieux J C, Rideau M, Clastre M. Plant Physio. Biochem., 2000, 38(3): 559-566

    10. [10]

      9 Feurle J, Jomaa H, Wilhelm M, Gutsche B, Herderich M. J. Chromatogr. A, 1998, 803(2): 111-119

    11. [11]

      10 Han Y S, Cesare S, Robert H, Verpoorte R. J. Chromatogr. A, 2003, 986(2): 291-296

    12. [12]

      11 Altincicek B, Hintz M, Sanderbrand S, Wiesner J. FEMS Microbio. Lett., 2000, 190(2): 329-333

    13. [13]

      12 Brammer L A, Caren F M. Org. Lett., 2009, 11(20): 4748-4751

    14. [14]

      13 Zhou Y F, Cui Z, Li H, Tian J, Gao W Y. Bioorg. Chem., 2010, 38(3): 120-123

    15. [15]

      14 Li H, Tian J, Wang H, Yang S Q, Gao W Y. Helv. Chim. Acta, 2010, 93(9): 1745-1750

    16. [16]

      15 Shigehisa U, Yohei I, Naoki K. J. Chromatogr. B, 2011, 879(11): 1282-1289

    17. [17]

      16 Zhu Ya-Mei, Cui Qun, Wang Hai-Yan. Chinese Journal of Chromatography, 2010, 28(1): 159-163

    18. [18]

      朱鸭梅, 崔 群, 王海燕. 色谱, 2010, 28(1): 159-163

    19. [19]

      17 YAN Kun-Ping, JING Xiao-Dan, HAN Jing, DAN Ning, CHEN Chao. Chinese J. Anal. Chem., 2009, 37(10): 1515-1518

    20. [20]

      严坤平, 景小丹, 韩 静, 但 宁, 陈 超. 分析化学 , 2009, 37(10): 1515-1518

    21. [21]

      18 WANG Jing-Yan, ZHU Sheng-Geng, XU Chang-Fa. Biochemistry. Beijing: Higher Education Press, 2002: 355-363

    22. [22]

      王镜岩, 朱胜庚, 徐长法. 生物化学. 北京: 高等教育出版社, 2002: 355-363

  • 加载中
    1. [1]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    4. [4]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    5. [5]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    6. [6]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    7. [7]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    8. [8]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    9. [9]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    10. [10]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    16. [16]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    17. [17]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    18. [18]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    19. [19]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    20. [20]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

Metrics
  • PDF Downloads(0)
  • Abstract views(305)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return