Citation: HE Jian, HUANG Ru-Jun, LI Gang, Tang Zi-Chao, LIN Shui-Chao. Development of a Miniature High Resolution Electron Impact Ion Source Time-of-Flight Mass Spectrometer[J]. Chinese Journal of Analytical Chemistry, ;2012, 40(10): 1616-1621. doi: 10.3724/SP.J.1096.2012.20403 shu

Development of a Miniature High Resolution Electron Impact Ion Source Time-of-Flight Mass Spectrometer

  • Corresponding author: HE Jian, 
  • Received Date: 17 April 2012
    Available Online: 23 May 2012

    Fund Project: 本文系中央高校科研业务费(No.2010121042)资助项目 (No.2010121042)

  • Since gas analysis mass spectrometers usually use quadrupole as the mass analyzer, the resolution is typically less than 300, and the same mass ions interference problem cannot be solved. This study developed a high resolution gas analysis mass spectrometer. Electron impact ion source reflection time-of-flight mass analyzer has been designed and tested. The length of vacuum chamber is only 45 cm. Mass resolution of 3,000 (Full width at half maximum, FWHM) has been achieved at m/z 28, as a result, CO and N2 can be separated at the half peak height. The best resolution of instrument can reach 5000 (FWHM) at m/z 69. At the condition of direct ambient air sampling, 136Xe (7.8 μg/m3) and 80Kr (2.8 μg/m3) can be detected. The dynamic range is up to 106 with fast ADC acquiring system. This instrument can be used as a high-end gas mass spectrometer and applied to on-line gas analysis for process monitoring, environmental organic volatile compounds research, thermal analysis mass spectrometry and catalytic reaction monitoring.
  • 加载中
    1. [1]

      1 Blake R S, Whyte C, Hughes C O, Ellis A M, Monks P S. Anal. Chem., 2004, 76(13): 3841-3845

    2. [2]

      2 HOU Ke-Yong, CHEN Xin-Hua, DONG Can, LI Jing-Hua, YAO Lian, WANG Hai-Long, WANG Jun-De, LI Hai-Yang. Chem. J. Chinese Universities, 2007, 28(7): 1240-1245

    3. [3]

      侯可勇,陈新华, 董 璨, 李京华, 姚 琏, 王海龙, 王俊德, 李海洋. 高等学校化学学报, 2007, 28(7): 1240-1245

    4. [4]

      3 LI Ying-Chun,TANG Li-Jun,WANG Jian, ZHANG Bao-Ke, LI Song, ZHAN Xiu-Chun, LUO Li-Qiang. Rock and Mineral Analysis, 2008, 27: 1-4

    5. [5]

      李迎春, 唐力君, 王 健, 张宝科, 李 松, 詹秀春, 罗立强. 岩矿测试, 2008, 27: 1-4

    6. [6]

      4 Bohátka S, Langer G, Szilágyi J, Berecz I. Int. J. Mass Spectrometery Ion Physics., 1983, 48: 277-280

    7. [7]

      5 WANG Tian-Shu. Chinese J. Anal.Chem., 2005, 33(6): 887-893

    8. [8]

      王天舒. 分析化学, 2005, 33(6): 887-893

    9. [9]

      6 Pfeiffer Vacuum Co., Ltd. The Vacuum Technology Book, 2011: 562

    10. [10]

      7 Dodonov A F, Chermushevich I V, Laiko V V. Time of Flight Mass Spectrometry, Published by American Chemical Society, 1994, Chapter 7: 108-123

    11. [11]

      8 Berkout V D, Cotter R J, Segers DP. J. Am. Soc. Mass Spectrom., 2001, 12(6): 641-647

    12. [12]

      9 Kozlovsky V, Fuhrer K, Tolmachev A, Dodonov A F, Raznikov V, Wollink H. Int. J. Mass Spectrom. Ion Proc., 1998, 27: 181-190 10 Mamyin B A, Int. J. Mass Spectrom., 2001, 206(3): 251-266

    13. [13]

      11 Chena Y H, Goninb M, Fuhrerb K, Dodonov A, Sua C S, Wollnik H. Int. J. Mass Spectrom.,1999, 185/186/187: 221-226

    14. [14]

      12 HE Jian, Dodonov A F, ZHUANG Zhi-Xia, YANG Peng-Yuan, YU Wen-Jia, WEI Jun-Fei. Chinese Journal of Scientific Instrument., 2003, 24(6): 603-605

    15. [15]

      何 坚, Dodonov A F, 庄峙厦, 杨芃原,于文佳, 魏俊飞. 仪器仪表学报, 2003, 24(6): 603-605

    16. [16]

      13 He J, Zhong W W, Mahan C, Hang W. Spectrochimica Acta Part B, 2006, 61(2): 220-224

    17. [17]

      14 NIST Chemistry WebBook, website: http://webbook.nist.gov/chemistry/

  • 加载中
    1. [1]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    2. [2]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    3. [3]

      Zhi FANGLiang SUNMingze ZHENGWenhao SHENGHongliang HUANGChongli ZHONG . An aluminum-based metal-organic framework with slit pores for the efficient separation and recovery of electronic specialty gas C3F8. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2054-2062. doi: 10.11862/CJIC.20250096

    4. [4]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    5. [5]

      Weiwei Zhang Yongxin Ren Hong Zhang Ke Lu . Current Situation and Quality Improvement Measures of Undergraduate Education in Modern Analytical Testing Technology under the “Learning, Teaching, and Practicing” Trinity Concept. University Chemistry, 2025, 40(10): 78-85. doi: 10.12461/PKU.DXHX202412006

    6. [6]

      Yanan Fan Jingjing Huang . Interactive Electronic Courseware Facilitates the Development of Integrated Undergraduate-Graduate Instrumental Analysis Laboratory Courses: A Case Study of UV-Vis Spectroscopy Analysis Experiment. University Chemistry, 2025, 40(10): 282-287. doi: 10.12461/PKU.DXHX202411009

    7. [7]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    8. [8]

      Zengbo Ke Baoyue Cao Xiaojie Hou Youying Di Shengli Gao . Exploration of Rare Gases in the Solar System. University Chemistry, 2025, 40(10): 130-155. doi: 10.12461/PKU.DXHX202410073

    9. [9]

      Shunliu Deng Haifeng Su Yaxian Zhu Yuzhi Wang Yuhua Weng Zhaobin Chen Shunü Peng Yinyun Lü Xinyi Hong Yiru Wang Xiaozhen Huang Zhimin Lin Lansun Zheng . Course Ideological and Political Design for Self-Building Experiments of Scientific Instruments: Taking the Construction, Debugging, and Application of Teaching Mass Spectrometer as an Example. University Chemistry, 2024, 39(2): 127-132. doi: 10.3866/PKU.DXHX202308002

    10. [10]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    11. [11]

      Xinghai LiZhisen WuLijing ZhangShengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 2309041-0. doi: 10.3866/PKU.WHXB202309041

    12. [12]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    13. [13]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    14. [14]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    15. [15]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    16. [16]

      Gang Liu Heng Zhang Ying Ma Shiling Yuan Qisheng Song Zhenghu Xu Jichao Sun . Exploration and Practice on Improving the Teaching Quality of Organic Chemistry Laboratory Course. University Chemistry, 2024, 39(4): 70-74. doi: 10.3866/PKU.DXHX202309079

    17. [17]

      Zongpei Zhang Yanyang Li Yanan Si Kai Li Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041

    18. [18]

      Yang Liu Ying Yu Yilei Wang Chao Chen . Building of a High-Quality, Multi-Level Teaching Team in Chemistry Experimental Teaching Center. University Chemistry, 2024, 39(7): 166-171. doi: 10.12461/PKU.DXHX202405069

    19. [19]

      Ruilan Fan Xiaoling Huang . 磷源的选择及三种含磷阻燃剂的合成与阻燃性. University Chemistry, 2025, 40(8): 181-191. doi: 10.12461/PKU.DXHX202410025

    20. [20]

      Dafa Chen Haiping Xia . From Pollutant to Metal-Centred Annulene: The Transformation Journey of a Little Osmium Atom. University Chemistry, 2025, 40(10): 156-160. doi: 10.12461/PKU.DXHX202508094

Metrics
  • PDF Downloads(0)
  • Abstract views(836)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return