Citation: ZHU Sheng-Nan, ZHANG Jing, LI Qing-Wen, LI Hong-Bo, JIN He-Hua, SONG Qi-Jun. Separation of Metallic Single-walled Carbon Nanotubes and Semiconducting Single-walled Carbon Nanotubes by Agarose Gel Electrophoresis[J]. Chinese Journal of Analytical Chemistry, ;2012, 40(12): 1839-1844. doi: 10.3724/SP.J.1096.2012.20360 shu

Separation of Metallic Single-walled Carbon Nanotubes and Semiconducting Single-walled Carbon Nanotubes by Agarose Gel Electrophoresis

  • Corresponding author: SONG Qi-Jun, 
  • Received Date: 6 April 2012
    Available Online: 2 July 2012

    Fund Project: 本文系国家自然科学基金(Nos.20903069,21175060)资助项目 (Nos.20903069,21175060)

  • The agarose gel electrophoresis(AGE) is one of the low-cost, large scale technologies for the separation of metallic single-walled carbon nanotubes(m-SWCNTs) and semiconducting single-walled carbon nanotubes(s-SWCNTs). The separated m-SWCNTs are divided into several parts and characterized by the UV-visible-near infrared absorption spectrum and the Raman spectrum respectively. The results show that the moieties with the fastest electrophoresis migration rate contain more m-SWCNTs. Furthermore, the effects of different agarose concentrations on the separating efficiencies of SWCNTs are investigated. It is found that higher concentration of agarose gel is beneficial to the enrichment of the m-SWCNTs and the separating efficiency of the m-SWCNTs could be realized by increasing the charge density on the surface of the SWCNTs.
  • 加载中
    1. [1]

      1 Wu Z C, Chen Z H, Du X, Logan J M, Sippel J, Nikolou M, Kamaras K, Reynolds J R, Tanner D B, Hebard A F, Rinzler A G. Science, 2004, 305(5688): 1273-1277

    2. [2]

      2 SUN Bin-Jie, WANG Ya-Nan, SHAO Nan, HU Xin-Fang, OUYANG Jin. Chinese J. Anal. Chem., 2009, 37: D027

    3. [3]

      孙斌杰, 王亚男, 邵 娜, 胡昕芳, 欧阳津. 分析化学, 2009, 37: D027

    4. [4]

      3 QI Yu-Bing, LIU Ying, SONG Qi-Jun. Chinese J. Anal. Chem., 2011, 39(7): 1053-1057

    5. [5]

      齐玉冰, 刘 瑛, 宋启军. 分析化学, 2011, 39(7): 1053-1057

    6. [6]

      4 Yao Z, Kane C L, Dekker C. Phys. Rev. Lett., 2000, 84(13): 2941-2944

    7. [7]

      5 Wind S J, Appenzeller J, Martel R, Derycke V, Avouris P. Appl. Phys. Lett., 2002, 80(20): 3817-3819

    8. [8]

      6 Ren Z F, Huang Z P, Xu J W, Wang J H, Bush P, Siegel M P, Provencio P N. Science, 1998, 282(5391): 1105-1107

    9. [9]

      7 Krupke R, Hennrich F, Lehneysen H V, Kappes M M. Science, 2003, 301(5631): 344-347

    10. [10]

      8 Green A A, Hersam M C. Nano Lett., 2008, 8(5): 1417-1422

    11. [11]

      9 Huang H J, Maruyama R, Noda K, Kajiura H, Kadono K. J. Phys. Chem. B, 2006, 110(14): 7316-7320

    12. [12]

      10 Zheng M, Jagota A, Strano M S, Santos A P, Barone P, Chou S G, Diner B A, Dresselhaus M S, Mclean R S, Onoa G B, Samsonidze G G, Semke, E D, Usrey M, Walls D J. Science, 2003, 302(5650): 1545-1548

    13. [13]

      11 Tanaka T, Urabe Y, Nishide D, Kataura H. Appl. Phys. Express, 2009, 2(12): 125002/1-125002/3

    14. [14]

      12 Tanaka T, Jin H, Miyata Y, Kataura, H. Appl. Phys. Express, 2008, 1(11): 114001/1-114001/3

    15. [15]

      13 Tanaka T, Jin H, Miyata Y, Fujii S, Nishide D, Kataura H. Phys. Status Solidi B, 2009, 246(11-12): 2490-2493

    16. [16]

      14 Tanaka T, Jin H, Miyata Y, Fujii S, Suga H, Naitoh Y, Minari T, Miyadera T, Tsukagoshi K, Kataura H. Nano Lett., 2009, 9(4): 1497-1500

    17. [17]

      15 WEN Xiao-Nan, ZHANG Jing, GU Wen-Xiu, JIN He-Hua, LI Hong-Bo, LI Qing-Wen. Acta. Phys. Chim. Sin., 2010, 26(10): 2757-2762

    18. [18]

      温晓南, 张 静, 顾文秀, 金赫华, 李红波, 李清文. 物理化学学报, 2010, 26(10): 2757-2762

    19. [19]

      16 ZHANG Jing, WEN Xiao-Nan, LI Hong-Bo, JIN He-Hua, SONG Qi-Jun, LI Qing-Wen. Chem. J. Chinese Universities, 2010, 31(11): 2190-2195

    20. [20]

      张 静, 温晓南, 李红波, 金赫华, 宋启军, 李清文. 高等学校化学学报, 2010, 31(11): 2190-2195

    21. [21]

      17 O'Connell M J, Bachilo S M, Huffman C B, Moore V C, Strano M S, Haroz E H, Rialon K L, Boul P J, Noon W H, Kittrell C, Ma J P, Hauge R H, Weisman R B, Smalley R E. Science, 2002, 297(5581): 593-596

    22. [22]

      18 Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y. Synthetic Met., 1999, 103(1-3): 2555-2558

    23. [23]

      19 Ding L, Tselev A, Wang J Y, Yuan D N, Chu H B, McNicholas T P, Li Y, Liu J. Nano Lett., 2009, 9(2): 800-805

    24. [24]

      20 Miyata Y, Yanagi K, Maniwa Y, Kataura H. J. Phys. Chem. C, 2008, 112(34): 13187-13191

    25. [25]

      21 Javey A, Guo J, Wang Q, Lundstrom M, Dai H J. Nature, 2003, 424(6949): 654-657

  • 加载中
    1. [1]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    4. [4]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    5. [5]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    6. [6]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    7. [7]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    8. [8]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    9. [9]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    10. [10]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    13. [13]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    14. [14]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    15. [15]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    18. [18]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    19. [19]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

Metrics
  • PDF Downloads(0)
  • Abstract views(583)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return