Citation: LI Chun-Zheng, CHEN Jia, ZHONG Yu-Huan, ZHONG Yu-Xu, XIE Jian-Wei, LI Hua. Simultaneous Quantification of Thioglycol and Thioglycol Sulfoxide in Rat Plasma by Isotope Dilution-Liquid Chromatography Tandem Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2012, 40(10): 1567-1572. doi: 10.3724/SP.J.1096.2012.20249 shu

Simultaneous Quantification of Thioglycol and Thioglycol Sulfoxide in Rat Plasma by Isotope Dilution-Liquid Chromatography Tandem Mass Spectrometry

  • Corresponding author: LI Hua, 
  • Received Date: 12 March 2012
    Available Online: 15 May 2012

    Fund Project: 本工作系国家"重大新药创制"科技重大专项(2008ZXJ09006-001,2010ZXJ0900X-003-002)资助 (2008ZXJ09006-001,2010ZXJ0900X-003-002)

  • A method based on isotope dilution-liquid chromatography tandem mass spectrometry (HPLC-MS/MS) was developed and validated to simultaneously quantify metabolites of sulfur mustard, thioglycol (TDG) and thioglycol sulfoxide (TDGO), in rat plasma. Plasma samples were pretreated with the mixed solvent of methanol and acetonitrile to precipitate proteins. The separation of TDG and TDGO was achieved on a ZORBAX-C18 column (3.0 mm×100 mm, 3.5 μm) by gradient elution with mobile phase consisting of methanol and 5 mmol/L ammonium formate aqueous solution. The mass spectrometric identification and quantification were performed using positive electrospray ionization and multiple reactions monitoring mode. An isotopic labeled TDG (d8-TDG) was used as internal standard. The calibration curves for TDG and TDGO were linear (R2>0.991) over the range from 5-800 μg/L, and 0.5-80 μg/L, with the lower limit of quantification at 5 and 0.5 μg/L. The recovery of the analytes ranged from 101% to 118%. The intra- and inter-day precisions (RSD) were all within 10%. The plasma was collected and analyzed from HD-exposure rats after subcutaneous administration, and the kinetics parameters of TDG and TDGO were calculated and demonstrated as follow: tmax 30 min and 60 min, cmax (1724±227) μg/L and (301±115) μg/L, AUC (3286±249) μg·h/L and (1010±363) μg·h/L, respectively.
  • 加载中
    1. [1]

      1 Takafuji E T, Franz D R. Medical Aspects of Chemical and Biological Warfare, Office of The Surgeon General, Washington D.C., TMM Publications, 1997: 198-200

    2. [2]

      2 Conference on Disarmament. The Convention on the Prohibition of the Development, Production, Stockpiling and Use of Chemical Weapons and on their Destruction, United Nations Document CD/ 1170, Geneva, Switzerland, 1992

    3. [3]

      3 Black R M, Read R W. J. Chromatogr. B, 1995, 665(1): 97-105

    4. [4]

      4 US Army Medical Research Institute of Chemical Defense (USAMRICD). Medical Management of Chemical Casualties Handbook. 4th Ed., Aberdeen Proving Ground, MD, USA, 2007: 83

    5. [5]

      5 Mesilaakso, M. Chemical Weapons Convention Chemicals Analysis: Sample Collection, Preparation and Analytical Methods; 1st Ed.; Chichester: John Wiley & Sons, 2005: 409-416

    6. [6]

      6 Capacio B R, Smith J R, DeLion M T, Anderson D R, Graham J S, Platoff G E, Korte W D. J. Anal. Toxicol, 2004, 28(5): 306-310

    7. [7]

      7 Jakubowski E M, Sidell F R, Evans R A, Carter M A, Keeler J R, Evans R A, McMonagle J D. Toxicol Mechanism Methods, 2000, 10(2): 143-150

    8. [8]

      8 Noort D, Fidder A, Benschop H P, de Jong L P A, Smith J R J. Anal. Toxicol., 2004, 28(5): 311-315

    9. [9]

      9 Smith J R, Capacio B R, Korte W D J. Anal. Toxicol., 2008, 32(1): 17-24

    10. [10]

      10 U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM), Guidance for Industry, Bioanalytical Method Validation, 2001

  • 加载中
    1. [1]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    2. [2]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    8. [8]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    9. [9]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    10. [10]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    11. [11]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    12. [12]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    13. [13]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    14. [14]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    15. [15]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    16. [16]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    17. [17]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    18. [18]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    19. [19]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    20. [20]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

Metrics
  • PDF Downloads(0)
  • Abstract views(513)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return