Citation: WANG Wei, Hong Jun, HANG Kun, YANG Wei-Yun, XIAO Bao-Lin, ZHAO Ying-Xue, Gao Yun-Fei. Investigation of Self-assembled Nano-cluster Artificial Peroxidase by Voltammetry and Spectroscopy[J]. Chinese Journal of Analytical Chemistry, ;2012, 40(10): 1543-1548. doi: 10.3724/SP.J.1096.2012.20208 shu

Investigation of Self-assembled Nano-cluster Artificial Peroxidase by Voltammetry and Spectroscopy

  • Corresponding author: Hong Jun, 
  • Received Date: 31 March 2012
    Available Online: 29 May 2012

    Fund Project: 本文系河南大学特聘教授科研启动基金(No.5443D08010) (No.5443D08010)

  • A nano-cluster with highly efficient peroxide activity was constructed self-assembly based on nafion (NF) and cytochrome c (Cyt c), The UV-Vis spectrometry, Circular Dichroism (CD) and transmission electron microscopic (TEM) methods were utilized for additional characterization of the artificial peroxidase (AP). The nano-cluster was composed of chain-ball structure, with an average ball size of approximately 40 nm detected by TEM method. The Michaelis–Menten (Km) and catalytic rate (kcat) constants of the AP were determined to be (2.5±0.4) μmol/L and (0.069±0.001) s-1, respectively, in 50 mmol/L PBS at pH 7.0. The catalytic efficiency of AP was evaluated to be (0.028±0.005) μmol/L-1s-1, which was 39%±5% as efficient as the native HRP. AP generated here can be used in place of HRP with high stability and activity. The AP was also immobilized on a functional MWNCTs-gold nano-complex modified glassy carbon electrode. The cyclic voltammetry of AP on the nano complex modified glassy carbon electrode showed a pair of well-defined quasi-reversible redox peaks with the formal potential of (Eo') of (-45±2) mV (vs. Ag/AgCl) at scan rate of 0.05 V/s. The heterogeneous electron transfer rate constant was evaluated to be 0.65 s-1 in 50 mmol/L Na2HPO4-NaH2PO4 buffer solution at pH 7.0. The cathodic peak current of the modified electrode increased with increasing concentration of hydrogen peroxide(from 0.02 to 10 nmol/L) with a detection limit of 0.05 nmol/L. The apparent Michaelis-Menten constant (Kmapp) was 0.23 nmol/L.
  • 加载中
    1. [1]

      1 LIU Sheng-Hua, WU Cheng-Tai. Chemisrty, 1998, 4: 1-5

    2. [2]

      刘盛华, 吴成泰. 化学通报, 1998, 4: 1-5

    3. [3]

      2 XING Jin-Juan, LIU Lin. Journal of Liaoning Institute of Technology-Natural Science Edition, 2009, 29(2): 125-128

    4. [4]

      邢锦娟, 刘 琳. 辽宁工业大学学报-自然科学版, 2009, 29(2): 125-128

    5. [5]

      3 CAO Feng, REN Yong, HUA Wei-Yi, MA Kun-Fang, GUO Yan-Long. Chinese Journal of Organic Chemistry, 2002, 22(11): 827-834

    6. [6]

      操 锋, 任 勇, 华维一, 马坤芳, 郭寅龙. 有机化学, 2002, 22(11): 827-834

    7. [7]

      4 YUAN De-Qi, XIE Ru-Gang, ZHAO Hua-Ming. Chinese Joumal of Organic Chemistry, 1992, 12: 126-138

    8. [8]

      袁德其, 谢如刚, 赵华明. 有机化学, 1992, 12(2): 126-138

    9. [9]

      5 LI Yang, SUN Ji-Zhou, BIAN Chao, TONG Jian-Hua, XIA Shan-Hong. Chinese J. Anal. Chem., 2011, 39(11): 1621-1628

    10. [10]

      李 洋, 孙楫舟, 边 超, 佟建华, 夏善红. 分析化学, 2011, 39(11): 1621-1628

    11. [11]

      6 HUANG Ying-Ping, YAN Ke-Mei, LUO Guang-Fu, LI Rui-Ping, CHEN Bai-Ling. Journal of China Three Gorges University-Natural Science Edition, 2001, 23(4): 368-373

    12. [12]

      黄应平, 颜克美, 罗光富, 李瑞萍, 陈百玲. 三峡大学学报-自然科学版, 2001, 23(4): 368-373

    13. [13]

      7 CHEN Hai-Ming, LI Tong-Hua, CHEN Kai. Chinese J. Anal. Chem., 2002, 30(6): 654-657

    14. [14]

      陈海明, 李通化, 陈 开. 分析化学, 2002, 30(6): 654-657

    15. [15]

      8 Maggio G, Freni S, Cavallaro S. Power Sources, 1998, 74: 17-23

    16. [16]

      9 HAN Ai-Xia, REN Yan-Rong, HUANG Jing, LI Mei-Lan, WANG Huan-Lin, ZHANG Min, LI Wen-Lin. Journal of Guangzhou Chemical Industry, 2009, 37(5): 135-137

    17. [17]

      韩爱霞, 任彦蓉, 黄 靖, 李梅兰, 汪焕林, 张 敏, 李文林. 广州化工, 2009, 37(5): 135-137

    18. [18]

      10 ZHENG Ning, GE Chen-Hao, GUO Zhong-Xian, LI Yuan-Zong, CHANG Wen-Bao, WANG Zong-Mu, LI Tie-Jin. Journal of Analytical Science, 2001, 17(4): 265-269

    19. [19]

      郑 宁, 葛晨灏, 郭忠先, 李元宗, 常文保, 王宗睦, 李铁津. 分析科学学报, 2001, 17(4): 265-269

    20. [20]

      11 HUANG Ying-Ping, LUO Guang-Fu, LUO Yong-Jun, CAI Ru-Xiu. Chinese J. Anal. Chem., 2005, 33(5): 599-604

    21. [21]

      黄应平, 罗光富, 罗勇军, 蔡汝秀. 分析化学, 2005, 33(5): 599-604

    22. [22]

      12 ZHENG QI, ZENG Yun-E, CAI Ru-Xiu. Journal of Analytical Science, 2005, 21(5): 563-568

    23. [23]

      郑 琦, 曾云鹗, 蔡汝秀. 分析科学学报, 2005, 21(5): 563-568

    24. [24]

      13 Rousseau C, Nielsen N, Bols M. Tetrahedron Letters, 2004, 45: 8709-8711

    25. [25]

      14 Moosavi-Movahedi A A, Semsarha F, Heli H, Nazari K, Ghourchian H, Hong J, Hakimelahi G H, Saboury A A, Sefidbakht Y. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 320: 213-221

    26. [26]

      15 Farivar F, Moosavi-Movahedi A A, Sefidbakht Y, Nazari K, Hong J, Sheibani N. Biochemical Engineering Journal, 2009, 49(1): 89-94

    27. [27]

      16 Gharibi H, Moosavi-Movahedi Z, Javadian S, Nazari K, Moosavi-Movahedi A A. The Journal of Physical Chemistry B. 2011, 115: 4671-4679

    28. [28]

      17 Hong J, Huang K, Wang W, Yang W-Y, Zhao Y-X, Xiao B-L, Moosavi-Movahedi Z, Ghourchian H, Sheibani N, Moosavi-Movahedi A A. Journal of the Iranian Chemical Society. 2012, In press. DOI: 10.1007/s13738-012-0078-3

    29. [29]

      18 YAO Shu-Qin, GUO Man-Dong. Physical Testing and Chemical Analysis Part B, 2004, 40(8): 488-491

    30. [30]

      姚淑琴, 郭满栋. 理化检验-化学分册, 2004, 40(8): 488-491

    31. [31]

      19 Molaei Rad A, Ghourchian H, Moosavi-Movahedi A A, Hong J, Nazari K. Anal. Biochemi., 2007, 362: 38-43

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    3. [3]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    4. [4]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    5. [5]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    6. [6]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    7. [7]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    8. [8]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    9. [9]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    12. [12]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    13. [13]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    14. [14]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    15. [15]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    16. [16]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    17. [17]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    18. [18]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    19. [19]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    20. [20]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

Metrics
  • PDF Downloads(0)
  • Abstract views(255)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return