Citation: LEI Zhao-Jing, ZHANG Cun-Zheng, HU Qiu-Hui, LIU Yuan, ZHANG Qiang, LIU Xian-Jin. Aptamer-Based Fluorescence Assay for Hg2+ Determination[J]. Chinese Journal of Analytical Chemistry, ;2012, 40(12): 1827-1831. doi: 10.3724/SP.J.1096.2012.20127 shu

Aptamer-Based Fluorescence Assay for Hg2+ Determination

  • Corresponding author: LIU Xian-Jin, 
  • Received Date: 15 March 2012
    Available Online: 18 June 2012

    Fund Project: 本文系江苏省农业科技自主创新项目(No.CX(10)236) (No.CX(10)236)苏州市科技支撑项目(No.SN201129) (No.SN201129)中国博士后基金(No.20090451177) (No.20090451177)江苏省博士后科研资助计划(No.0802023B)资助项目 (No.0802023B)

  • A RNA aptamer modified to DNA (N1) that could bind to the target of Ni2+ was found that could bind specifically to Hg2+ ion with typical secondary structure. Thereafter, several DNA aptamers with a certain conformation of sequence mutation and splice were designed in order to increase the property of Hg2+ binding, and Aptamer-based fluorescence assay for the Hg2+ ion determination was developed. The addition of the Hg2+ to a mixture containing the duplex of a fluorophore labeled aptamer and a quencher-modified antisense nucleic acid (Q2) would force the release of Q2 from labeled aptamer, which was spontaneously accompanied by the increase of fluorescence intensity and made Hg2+ in quantitative analysis. It was shown that stable labeled aptamer DNA and Q2 hydrogen bonds formed at concentration ration of 1:3(labeled aptamer and Q2, respectively), under the condition of 5 min denaturation in 94℃ and 30 min renaturation in room temperature (25℃) in the fluorescence assay preparation. For aptamer N1, the fluorescence assay results showed that linear response toward Hg2+ concentration with fluorescence quenching system ranged from 1.25 mg/L to 20 mg/L, with the limit of detection 0.625 mg/L. In order to improve the sensitivity of aptamer N1, 4 oligonucleotides (N4, N5, N6, N7) were designed and synthesized based on the structure of N1. The results showed that N5 had the best affinity and specificity to Hg2+ which displayed the linear range for the Hg2+ concentration detection was 0.156 mg/L to 2.5 mg/L with a detection limit of 78 μg/L.
  • 加载中
    1. [1]

      1 Bannon D I, Chisolm J J. Clin. Chem., 2001, 47(9): 1703-1704

    2. [2]

      2 TANG Rui, LI Tian-Peng, GU Xue-Shi, Li Yong-Jian, YANG Yi. Spectroscopy and Spectral Analysis, 2010, 30(2): 528-531

    3. [3]

      唐 睿, 李添朋, 古学轼, 李永键, 杨 屹. 光谱学与光谱分析, 2010, 30(2): 528-531

    4. [4]

      3 Liu H W, Jiang S J, Liu S H. Spectrochim. Acta Part B, 1999, 54(9): 1367-1375

    5. [5]

      4 Yang W R, Chow E, Willett G D, Hibbert D B, Gooding J J. Analyst, 2003, 128(6): 712-718

    6. [6]

      5 Baldo M A, Daniele S, Ciani I, Bragato C, Wang J. Electroanalysis, 2004, 16(5): 360-366

    7. [7]

      6 Frank D N, Pace N R. Proc. Natl. Acad. Sci. USA, 1997, 94(26): 14355-14360

    8. [8]

      7 Rajendran M, Ellington A D. Anal. Bioanal. Chem., 2008, 390(4): 1067-1075

    9. [9]

      8 Hofmann, H P, Limmer S, Hornung V, Sprinzl M. RNA, 1997, 3: 1289-1300

    10. [10]

      9 XU Hui, GAO Shu-Li, WANG Li-Hu. Chemical Sensors, 2010, 30(1): 13-24

    11. [11]

      徐 慧, 高淑丽, 王丽华. 化学传感器, 2010, 30(1): 13-24

    12. [12]

      10 WANG Yong-Xiang, LI Ji-Shan, YANG Rong-Hua. Chemical Sensors, 2010, 30(3): 1-13

    13. [13]

      王永祥, 李继山, 杨荣华. 化学传感器, 2010, 30(3): 1-13

    14. [14]

      11 Nutiu R, Li Y F. Methods, 2005, 37: 16-25

    15. [15]

      12 Wang Z D, Lee J H, Lu Y. Chem. Commun., 2008, 45: 6005-6007

    16. [16]

      13 Ono A, Togashi H. Angew. Chem., 2004, 116: 4400-4402

    17. [17]

      14 Li L, Li B X, Qi Y Y, Jin Y. Anal. Bioanal. Chem., 2009, 3(93): 2051-2057

    18. [18]

      15 Wang J, Liu B. Chem. Comm., 2008, 39: 4759-4761

  • 加载中
    1. [1]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    2. [2]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    3. [3]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    4. [4]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    5. [5]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    6. [6]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    9. [9]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    10. [10]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    11. [11]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    12. [12]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    13. [13]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    16. [16]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    17. [17]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    18. [18]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    19. [19]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    20. [20]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

Metrics
  • PDF Downloads(0)
  • Abstract views(365)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return