Citation: YAN Xiao-Fei, LI Yun-Tao, WANG Rong-Hui, LIN Jian-Han, WEN Xin-Hua, WANG Mao-Hua, AN Dong, HAN Wei-Jing, YU Yu-De, LI Yan-Bin. An Impedance Immunosensor for Detection of H5 Subtype Avian Influenza Virus[J]. Chinese Journal of Analytical Chemistry, ;2012, 40(10): 1507-1513. doi: 10.3724/SP.J.1096.2012.20120 shu

An Impedance Immunosensor for Detection of H5 Subtype Avian Influenza Virus

  • Corresponding author: WANG Mao-Hua, 
  • Received Date: 14 February 2012
    Available Online: 27 March 2012

    Fund Project: 本文系国际科技交流与合作专项(No.2010DFA31000)资助 (No.2010DFA31000)

  • An impedance immunosensor was developed for the rapid detection of H5 subtype avian influenza virus (AIV). Monoclonal antibodies against AIV H5N1 surface antigen hemagglutinin (HA) were immobilized on the surface of gold interdigitated array microelectrodes through protein A for capturing AIV H5N1 in sample solutions. Electrochemical impedance spectroscopy in the presence of [Fe(CN)6]3-/4- as a redox probe was used to describe the surface modification of microelectrodes and the binding of viruses. A linear relationship between the logarithmic value of concentration of AIV H5N1 and the change of electron transfer resistance was found in the concentration range of 21-26 HA unit per 50 μL, and its correlation coefficient was 0.9885. The detection limit was 20 HA unit per 50 μL, and the detection time was 1 h. This immunosensor could be used repeatedly with good specificity and high sensitivity, and it is promising for rapid detection of pathogenic microorganisms.
  • 加载中
    1. [1]

      1 WEI Quan-De, TAN Ai-Jun. Microbiology, 2007, 34(5): 986-990

    2. [2]

      魏泉德, 谭爱军. 微生物学通报. 2007, 34(5): 986-990

    3. [3]

      2 LIANG Zhi-Xiang. Prac. J. Med. Pharm., 2006, 23(4): 485-487

    4. [4]

      梁之祥. 实用医药杂志, 2006, 23(4): 485-487

    5. [5]

      3 WHO.http://www.who.int/en/. Accessed 12 March, 2012

    6. [6]

      4 ZHENG Guo-Ping, XIANG Dong-Shan, CAI Jin-Zhang, HE Zhi-Ke. Chem. J. Chinese Universities, 2011, 32(8): 1737-1743

    7. [7]

      曾国平, 向东山, 蔡金杖, 何治柯. 高等学校化学学报, 2011, 32(8): 1737-1743

    8. [8]

      5 Velumani S, Du Q, Fenner B J, Prabakaran M, Wee L C, Nuo L Y, Kwang J. Journal of Virological Methods, 2008, 147(2): 219-225

    9. [9]

      6 Dhumpa R, Bu M, Handberg K J, Wolff A, Bang D D. Journal of Virological Methods, 2010, 169(1): 228-231

    10. [10]

      7 Shabat M B, Meir R, Haddas R, Lapin E, Shkoda I, Raibstein I, Perk S, Davidson I. Journal of Virological Methods, 2010, 168(1-2): 72-77

    11. [11]

      8 Chantratita W, Sukasem C, Kaewpongsri S, Srichunrusami C, Pairoj W, Thitithanyanont A, Chaichoune K, Ratanakron P, Songserm T, Damrongwatanapokin S, Landt O. Molecular and Cellular Probes, 2008, 22(5-6): 287-293

    12. [12]

      9 Chen H, Zhang J, Sun D, Ma L, Liu X, Cai X, Liu Y. Journal of Virological Methods, 2008, 151(2): 200-203

    13. [13]

      10 Wang R, Wang Y, Lassiter K, Li Y, Hargis B, Tung S, Berghman L, Bottje W. Talanta, 2009, 79(2): 159-164

    14. [14]

      11 KE Yan-Kun, CHEN Xiao-Chun, QI Yan, ZHANG Yu-Kun, LIAO Ming, QI Wen-Bao. China Poultry, 2008, 30(14): 29-32

    15. [15]

      柯艳坤, 陈晓春, 齐 岩, 张煜坤, 廖 明, 亓文宝. 中国家禽. 2008, 30(14): 29-32

    16. [16]

      12 Xu L, He N, Du J, Deng Y. Electrochemistry Communications, 2008, 10(11): 1657-1660

    17. [17]

      13 Xu L, Du J, Deng Y, He N. Electrochemistry Communications, 2010, 12(10): 1329-1332

    18. [18]

      14 Zhu X, Ai S, Chen Q, Yin H, Xu J. Electrochemistry Communications, 2009, 11(7): 1543-1546

    19. [19]

      15 Chung D J, Kim K C, Choi S H. Applied Surface Science, 2011, 257(22): 9390-9396

    20. [20]

      16 Nilsson C E, Abbas S, Bennemo M, Larsson A, Hämäläinen M D, Frostell-Karlsson Å. Vaccine, 2010, 28(3): 759-766

    21. [21]

      17 Li D, Wang J, Wang R, Li Y, Abi-Ghanem D, Berghman L, Hargis B, Lu H. Biosensors and Bioelectronics, 2011, 28(10): 4146-4154

    22. [22]

      18 Xu J, Suarez D, Gottfried D S. Anal. and Bioanal. Chem., 2007, 389(4): 1193-1199

    23. [23]

      19 Charlton B, Crossley B, Hietala S. Comparative Immunology, Microbiology and Infectious Diseases, 2009, 32(4): 341-350

    24. [24]

      20 Luo Q, Huang H, Zou W, Dan H, Guo X, Zhang A, Yu Z, Chen H, Jin M.Veterinary Microbiology, 2009, 137(1-2): 24-30

    25. [25]

      21 Cui S, Tong G. Journal of Veterinary Diagnostic Investigation, 2008, 20(5): 567-571

    26. [26]

      22 Dhumpa R, Handberg K J, Jrgensen P H, Yi S, Wolff A, Bang D D. Diagnostic Microbiology and Infectious Disease, 2011, 69(3): 258-265

    27. [27]

      23 Sidoti F, Rizzo F, Costa C, Astegiano S, Curtoni A, Mandola M L, Cavallo R, Bergallo M. Mol. Biotechnol., 2010, 44(1): 41-50

    28. [28]

      24 Lau L T, Banks J, Aherne R, Brown I H, Dillon N, Collins R A, Chan K Y, Fung Y W W, Xing J, Yu A C H. Biochem. Biophys. Res. Commun. , 2004, 313(2): 336-342

    29. [29]

      25 Imai M, Ninomiya A, Minekawa H, Notomi T, Ishizaki T, Tu P V, Tien N T K, Tashiro M, Odagiri T. Journal of Virological Methods, 2007, 141(2): 173-180

  • 加载中
    1. [1]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    2. [2]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    3. [3]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    8. [8]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    9. [9]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    10. [10]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    11. [11]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    12. [12]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    13. [13]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    14. [14]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    15. [15]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    16. [16]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    17. [17]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(0)
  • Abstract views(309)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return