Citation: GU Hai-Wei, QI Yun-Peng, XU Ning, DING Jian-Hua, AN Yan-Bo, CHEN Huan-Wen. Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry-based Metabolomics for Cancer Diagnosis[J]. Chinese Journal of Analytical Chemistry, ;2012, 40(12): 1933-1937. doi: 10.3724/SP.J.1096.2012.10542 shu

Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry-based Metabolomics for Cancer Diagnosis

  • Corresponding author: CHEN Huan-Wen, 
  • Received Date: 28 May 2012
    Available Online: 26 September 2012

    Fund Project: 本文系国家自然科学基金(Nos.21005015,30901981) (Nos.21005015,30901981)国家重大仪器专项(No.2011YQ170067) (No.2011YQ170067)普度大学研究基金(美国)项目资助 (美国)

  • In this review, we aim to introduce a relatively new approach, metabolomics, and explore its potential for cancer diagnosis. We will briefly introduce the concept of metabolomics and its relationship with other omics studies in systems biology for cancer detection. The field of metabolomics focuses on the parallel measurement of hundreds of small molecule metabolites in biological samples such as blood, urine, and biopsied tissue. Since metabolite levels are sensitive to subtle changes in the pathological status, metabolomics promises novel avenues for early cancer detection and a better understanding of cancer processes. In fact, many previous metabolomics studies have clearly demons-trated the promises of metabolomics not only for the diagnosis of various kinds of cancer, but also for therapeutic monitoring as well as for drug development. In addition, in this review we will discuss the challenges and future directions for developing metabolomics methods towards clinical applications for cancer diagnosis.
  • 加载中
    1. [1]

      1 Siegel R, Naishadham D, Jemal A. CA. Cancer J. Clin., 2012, 62(1): 10-29

    2. [2]

      2 Ministry of Health, the People's Republic of China. Report on the Third National Sampling Survey of Causes of Death. Beijing: The People's Health Press, 2008

    3. [3]

      3 Belkowski S M, Polkovitch D, D'Andrea M R. Curr. Top. Med. Chem., 2005, 5(11): 1047-1051

    4. [4]

      4 Lu W L, Jansen L, Post W J, Bonnema J, Velde J C V d, Bock G H D. Breast Cancer Res. Treat., 2009, 114(3): 403-412

    5. [5]

      5 Nicholson J K, Lindon J C, Holmes E. Xenobiotica, 1999, 29(11): 1181-1189

    6. [6]

      6 Gowda G A N, Zhang S C, Gu H W, Asiago V, Shanaiah N, Raftery D. Expert Rev. Mol. Diagn., 2008, 8(5): 617-633

    7. [7]

      7 Fiehn O. Plant Mol. Biol., 2002, 48(1-2): 155-171

    8. [8]

      8 Wu Z M, Huang Z Q, Lehmann R, Zhao C X, Xu G W. Chromatographia, 2009, 69: S23-S32

    9. [9]

      9 Tang H R, Wang Y L. Prog. Biochem. Biophys., 2006, 33(5): 401-417

    10. [10]

      10 Heiden M G V, Cantley L C, Thompson C B. Science, 2009, 324(5930): 1029-1033

    11. [11]

      11 Samudio I, Fiegl M, Andreeff M. Cancer Res., 2009, 69(6): 2163-2166

    12. [12]

      12 Warburg O. Science, 1956, 123(3191): 309-314

    13. [13]

      13 Takats Z, Wiseman J M, Gologan B, Cooks R G. Science, 2004, 306(5695): 471-473

    14. [14]

      14 Cooks R G, Ouyang Z, Takats Z, Wiseman J M. Science, 2006, 311(5767): 1566-1570

    15. [15]

      15 Cody R B, Laramee J A, Durst H D. Anal. Chem., 2005, 77(8): 2297-2302

    16. [16]

      16 Chen H W, Venter A, Cooks R G. Chem. Commun., 2006, (19): 2042-2044

    17. [17]

      17 Gu H W, Xu N, Chen H W. Anal. Bioanal. Chem., 2012, 403(8): 2145-2153

    18. [18]

      18 Broadhurst D I, Kell D B. Metabolomics, 2006, 2(4): 171-196

    19. [19]

      19 Raftery D, Gowda G A N. J. Urol., 2008, 179(6): 2089-2090

    20. [20]

      20 Bathe O F, Shaykhutdinov R, Kopciuk K, Weljie A M, Mckay A, Sutherland F R, Dixon E, Dunse N, Sotiropoulos D, Vogel H J. Cancer Epidem. Biomar., 2011, 20(1): 140-147

    21. [21]

      21 Odunsi K, Wollman R M, Ambrosone C B, Hutson A, McCann S E, Tammela J, Geisler J P, Miller G, Sellers T, Cliby W, Qian F, Keitz B, Intengan M, Lele S, Alderfer J L. Int. J. Cancer, 2005, 113(5): 782-788

    22. [22]

      22 Rantalainen M, Cloarec O, Beckonert O, Wilson I D, Jackson D, Tonge R, Rowlinson R, Rayner S, Nickson J, Wilkinson R W, Mills J D, Trygg J, Nicholson J K, Holmes E. J. Proteome Res., 2006, 5(10): 2642-2655

    23. [23]

      23 Chen H W, Pan Z Z, Talaty N, Raftery D, Cooks R G. Rapid Commun. Mass Spectrom., 2006, 20(10): 1577-1584

    24. [24]

      24 Fan T W, Lane A N, Higashi R M, Farag M A, Gao H, Bousamra M, Miller D M. Mol. Cancer, 2009, 8: 41

    25. [25]

      25 Chen J, Wang W Z, Lv S, Yin P Y, Zhao X J, Lu X, Zhang F X, Xu G W. Anal. Chim. Acta, 2009, 650(1): 3-9

    26. [26]

      26 Sitter B, Lundgren S, Bathen T F, Halgunset J, Fjosne H E, Gribbestad I S. NMR Biomed., 2006, 19(1): 30-4027 Asiago V M, Alvarado L Z, Shanaiah N, Gowda G A N, Owusu-Sarfo K, Ballas R A, Raftery D. Cancer Res., 2010, 70(21): 8309-8318

    27. [27]

      28 Pan Z Z, Raftery D. Anal. Bioanal.Chem., 2007, 387(2): 525-527

    28. [28]

      29 Gu H W, Pan Z Z, Xi B W, Asiago V, Musselman B, Raftery D. Anal. Chim. Acta, 2011, 686(1-2): 57-63

    29. [29]

      30 Wang D J, Bodovitz S. Trends Biotechnol., 2010, 28(6): 281-290

    30. [30]

      31 D'Alessandro A, Zolla L. Drug Discov. Today, 2012, 17(1-2): 3-9

    31. [31]

      32 Wishart D S, Tzur D, Knox C, Eisner R, Guo A C, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly M A, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau D D, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan G E, MacInnis G D, Weljie A M, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes B D, Vogel H J, Querengesser L. Nucleic Acids Res., 2007, 35: D521-D526

    32. [32]

      33 Kanehisa M. In Silico Simulation of Biological Processes, 2002, 247: 91-103

    33. [33]

      34 http://webbook.nist.gov/chemistry/

  • 加载中
    1. [1]

      Haolin Zhan Qiyuan Fang Jiawei Liu Xiaoqi Shi Xinyu Chen Yuqing Huang Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045

    2. [2]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    3. [3]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    4. [4]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    5. [5]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    6. [6]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    7. [7]

      Yan Su Xiuyun Wang Huimin Guo Yanjuan Zhang Xinwen Zhang Yunting Shang Wenfeng Jiang . To Cultivate Scientific Literacy by Learning, Thinking, Practicing and Understanding, To Utilize the “Smart Eye” Expertise by Integrating of Knowledge and Action: Ideological and Political Construction of Analytical Chemistry Experiment Course. University Chemistry, 2024, 39(2): 196-202. doi: 10.3866/PKU.DXHX202308003

    8. [8]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    9. [9]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    10. [10]

      Jiantao Zai Hongjin Chen Xiao Wei Li Zhang Li Ma Xuefeng Qian . The Learning-Centered Problem-Oriented Experimental Teaching. University Chemistry, 2024, 39(4): 40-47. doi: 10.3866/PKU.DXHX202309023

    11. [11]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    12. [12]

      Weitai Wu Laiying Zhang Yuan Chun Liang Qiao Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031

    13. [13]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    14. [14]

      Laiying Zhang Weitai Wu Yiru Wang Shunliu Deng Zhaobin Chen Jiajia Chen Bin Ren . Practices for Improving the Course of Chemical Measurement Experiments in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 107-112. doi: 10.12461/PKU.DXHX202409032

    15. [15]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    16. [16]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    17. [17]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    18. [18]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    19. [19]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    20. [20]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

Metrics
  • PDF Downloads(0)
  • Abstract views(205)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return