Citation:
NIE Guizhen, LI Laisheng, CHENG Biaoping, ZHOU Rendan, ZHANG Hongfu. Preparation of β-Cyclodextrin Capillary Column for Enantioseparation and Determination of Nicardipine and Manidipine by Capillary Electrochromatography[J]. Chinese Journal of Applied Chemistry,
;2014, 31(12): 1472-1480.
doi:
10.3724/SP.J.1095.2014.40059
-
The separation and determination methods of calcium antagonists manidipine hydrochloride and nicardipine hydrochloride enantiomers were developed by open-tubular capillary electrochromatography(CEC),respectively.A new capillary column with p-nitrophenylcarbamation β-cyclodextrin was prepared by sol-gel method.The sol-gel modified with cyclodextrin derivative was characterized by infrared spectroscopy(IR) and scanning electron microscopy(SEM).In polar organic mode,the effect of the volume fraction and concentration of added triethylamine and glacial acetic acid,the content of organic solvents,the operating voltage,and temperature on the resolution(RS) were investigated.The optimized conditions were at 20℃,detection wavelength at 236 nm,and injection pressure at 3.448 kPa×3 s.The compositions of mobile phases were V(MeOH):V(ACN):V(TEA):V(HOAc)=57:43:0.05:0.07 for manidipine hydrochloride and V(MeOH):V(ACN):V(TEA):V(HOAc)=55:45:0.05:0.08 for nicardipine hydrochloride.The resolution(Rs) of manidipine hydrochloride was 1.39 at 25 kV.The resolution(Rs) of nicardipine hydrochloride was 1.30 at 20 kV.The RSDs of retention time and peak area were less than 1.2% and 5.6%(n=5) for the drugs,respectively.It was indicated that new column has stable electrochromatography performance.The single run time were less than 5 min for manidipine hydrochloride and less than 7 min for nicardipine hydrochloride.Good linearity were observed in the concentration range of 5.2~125.0 mg/L with correlation coefficients 0.9969 or more for both drug enantiomers.The limit of detection values were 1.8 mg/L for manidipine and 2.3 mg/L for nicardipine,respectively.The nitrophenyl carbamated β-cyclodextrin phase(NCDP) column were preliminarily used for determinations of manidipine hydrochloride and nicardipine hydrochloride tablet and capsule.
-
-
-
-
[1]
Yan ZHAO , Jiaxu WANG , Zhonghu LI , Changli LIU , Xingsheng ZHAO , Hengwei ZHOU , Xiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316
-
[2]
Xiaokang JIANG , Junliang MA , Yan ZHAO , Feng GAO , Changli LIU , Xingshen ZHAO , Hengwei ZHOU . Preparation and luminescent properties of Sm3+-doped La2MgZrO6 phosphors. Chinese Journal of Inorganic Chemistry, 2026, 42(2): 263-270. doi: 10.11862/CJIC.20250236
-
[3]
Qiuting Zhang , Fan Wu , Jin Liu , Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174
-
[4]
Runjie Li , Hang Liu , Xisheng Wang , Wanqun Zhang , Wanqun Hu , Kaiping Yang , Qiang Zhou , Si Liu , Pingping Zhu , Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059
-
[5]
Dongheng WANG , Si LI , Shuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379
-
[6]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[7]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[8]
Haiying Wang , Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004
-
[9]
Keying Qu , Jie Li , Ziqiu Lai , Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091
-
[10]
Guilan He , Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122
-
[11]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[12]
Ke QIAO , Yanlin LI , Shengli HUANG , Guoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265
-
[13]
Ruiying WANG , Hui WANG , Fenglan CHAI , Zhinan ZUO , Benlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052
-
[14]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[15]
Siran Wang , Yinuo Wang , Yilong Zhao , Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033
-
[16]
Lixing ZHANG , Yaowen WANG , Xu HAN , Junhong ZHOU , Jinghui WANG , Liping LI , Guangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007
-
[17]
Jia-He Li , Yu-Ze Liu , Jia-Hui Ma , Qing-Xiao Tong , Jian-Ji Zhong , Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080
-
[18]
Conghao Shi , Ranran Wang , Juli Jiang , Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034
-
[19]
Tong Wang , Liangyu Hu , Shiqi Chen , Xinqiang Fu , Rui Wang , Kun Li , Shuangyan Huan . Determination of Benzenediol Isomers in Cosmetics Using High-Performance Liquid Chromatography Empowered by “Mathematical Separation”. University Chemistry, 2026, 41(1): 9-19. doi: 10.12461/PKU.DXHX202503128
-
[20]
Zhongyan Cao , Shengnan Jin , Yuxia Wang , Yiyi Chen , Xianqiang Kong , Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1091)
- HTML views(125)
Login In
DownLoad: