Citation:

CCS Chemistry:静电组装导向聚合- 聚电解质纳米凝胶量化制备新策略

[J]. CCS Chemistry, ;2020, 2(0): 1016-1025. doi: 10.31635/ccschem.020.202000354 shu

CCS Chemistry:静电组装导向聚合- 聚电解质纳米凝胶量化制备新策略

Figures(1)

  •   华东理工大学王俊有课题组报道了一种可控量化制备聚电解质纳米凝胶的通用方法,提出了静电组装导向聚合(Electrostatic Assembly Directed Polymerization)的技术途径,实现了一系列聚电解质纳米凝胶的高效、量化制备,为该类材料的实际应用奠定了基础。

      聚电解质纳米凝胶是由聚电解质交联形成的水凝胶纳米粒子,其不仅具备常规纳米水凝胶的结构特征,同时还带有大量的电荷,可以高效地负载生物功能分子(酶、DNA,RNA、多肽等),并保持其(次级)结构和生物功能。因此,聚电解质纳米凝胶作为功能性“软”载体被广泛应用于药物传输、组织工程、生物传感、以及催化等不同领域。然而,聚电解质纳米凝胶的高效、量化制备仍然比较困难,发展新的合成策略是解决此问题的关键。

    图1 静电组装导向聚合量化制备聚电解质纳米凝胶

      考虑到单体的电荷特性,该课题组在前期聚电解质可控组装的研究基础上(Angew. Chem. Int. Ed. 2018, 57, 12680;Angew. Chem. Int. Ed. 2019, 58, 8494),利用静电组装构筑限域环境,实施可控聚合,提出了静电组装导向聚合的方法,实现了不同聚电解质纳米凝胶的高效、量化制备。该方法利用聚离子-中性嵌段聚合物为模板,引发带相反电荷的单体与交联剂原位共聚,得到分散均一的复合胶束。反应完成后,利用高盐溶液脱除复合胶束中的嵌段聚合物,得到结构和尺寸高度可控的聚电解质纳米凝胶,且分离出的嵌段聚合物可再次作为模板重复循环使用(图1)。




    图2 (a)不同正电单体合成的纳米凝胶的粒径分布;(b)不同氯化钠浓度下合成的纳米凝胶的粒径;(c)不同交联剂合成的PDMAEMA纳米凝胶的粒径分布;(d)不同单体浓度和体积下合成的PDMAEMA纳米凝胶的粒径分布。


      静电组装导向聚合方法具有以下特点:1. 方法简便通用:水相自由基聚合,适用于多种正、负电荷单体,可以制备一系列聚电解质纳米凝胶(图2a)。2. 凝胶尺寸、结构可控:改变合成过程中的盐浓度可调控纳米凝胶尺寸(图2b),调控交联剂和交联度则可控制凝胶结构和性能(图2c)。3. 高浓度和体积下聚合可控,可量化制备聚电解质纳米凝胶(图2d)。4. 模板可回收循环使用。



    图3 (a)游离脂肪酶与负载于PDMAEMA纳米凝胶中脂肪酶的催化活性;(b)AIE分子在不同纳米凝胶中的荧光强度;(c)Au@PDMAEMA纳米凝胶催化对硝基苯酚过程中,紫外吸光度随时间的变化。


       为验证聚电解质纳米凝胶作为“软”纳米载体的普适性应用,该团队将一系列功能性客体如脂肪酶、AIE荧光分子以及Au纳米颗粒负载于聚电解质纳米凝胶中,并研究了纳米凝胶的微环境对功能性客体性质的影响。研究发现,所制备的纳米凝胶能够有效地负载脂肪酶,并显著提升其催化活性(图3a);由于不同聚电解质纳米凝胶内部微环境存在差异,使得所负载的AIE分子表现出不同的荧光特性(图3b);此外,所制备的纳米凝胶对Au纳米颗粒亦展示出很好的负载能力,并可催化模型反应高效进行(图3c)。


       综上所述,该研究工作展示了一种简单、高效、量化制备聚电解质纳米凝胶的新策略和新思路,将为聚电解质基“软”载体材料的实际应用提供重要的技术支撑。该工作以research article 的形式发表在CCS Chemistry上,论文的第一作者为华东理工大学博士研究生丁鹏,通讯作者为王俊有副教授Cohen Stuart教授郭旭虹教授在材料表征及数据分析上提供了帮助与支持。


    文章详情:

    Efficient and Generic Preparation of Diverse Polyelectrolyte Nanogels by Electrostatic Assembly Directed Polymerization

    Peng Ding, Jianan Huang, Cheng Wei, Wei Liu, Wenjuan Zhou, Jiahua Wang, Mingwei Wang, Xuhong Guo, Martien A. Cohen Stuart & Junyou Wang*

    Citation:CCS Chem. 2020, 2, 1016–1025

    Link:https://doi.org/10.31635/ccschem.020.202000354



  • 加载中
  • 加载中
    1. [1]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    2. [2]

      Jiayuan Liang Xin Mi Songhao Guo Hui Luo Kejun Bu Tonghuan Fu Menglin Duan Yang Wang Qingyang Hu Rengen Xiong Peng Qin Fuqiang Huang Xujie Lü . Pressure-induced emission in 0D metal halide (EATMP)SbBr5 by regulating exciton-phonon coupling. Chinese Journal of Structural Chemistry, 2024, 43(7): 100333-100333. doi: 10.1016/j.cjsc.2024.100333

    3. [3]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    4. [4]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    5. [5]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    6. [6]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    7. [7]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    8. [8]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    9. [9]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    10. [10]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    11. [11]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    12. [12]

      Linfang WangJing LiuMinghao RenWei Guo . A highly sensitive fluorescent HClO probe for discrimination between cancerous and normal cells/tissues. Chinese Chemical Letters, 2024, 35(6): 108945-. doi: 10.1016/j.cclet.2023.108945

    13. [13]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    14. [14]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    15. [15]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    16. [16]

      Zhenqiang GuoHuicong YangQian WeiShengjun XuGuangjian HuShuo BaiFeng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622

    17. [17]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    20. [20]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

Metrics
  • PDF Downloads(0)
  • Abstract views(10505)
  • HTML views(962)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return