Citation: Xu PAN, Bing DU, Xin HUANG, Rui-zhuang WANG, Hui WEI, Hai-yong ZHANG, Yi LIU, De-ping XU. Preparation of core-shell structural twin HZSM-5@Silicalite-1 catalysts and its performance for toluene alkylation with methanol[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(5): 611-620. doi: 10.19906/j.cnki.JFCT.2021095 shu

Preparation of core-shell structural twin HZSM-5@Silicalite-1 catalysts and its performance for toluene alkylation with methanol

Figures(8)

  • The technology of alkylation of toluene with methanol to p-xylene has attracted much attention due to the high selectivity of p-xylene and low energy consumption in product separation unit. Twin HZSM-5 molecular sieve has the characteristics of large coverage proportion of zigzag channels on the surface and less aluminum distribution on the outer surface. It shows high selectivity for p-xylene in the alkylation of toluene and methanol. In this paper, silicalite-1 (S-1) was grown epitaxially on the surface of twin HZSM-5 molecular sieve by hydrothermal crystallization, and twin HZSM-5@Silicalite-1 core-shell catalyst was obtained. Compared with twin HZSM-5, HZSM-5@40Silicalite-1 core-shell catalyst shows excellent catalytic performance in toluene methanol alkylation. Under the reaction conditions of 470 ℃, 0.1 MPa and hydrogen atmosphere, the conversion of toluene is 8.5% and the selectivity of p-xylene is 98.4%. Then, the effect of solid-liquid mass ratio of nuclear HZSM-5 and silicalite-1 shell precursors on the growth of silicalite-1 crystal was further studied, and the effect of silicalite-1 on the catalytic performance of twin HZSM-5 was investigated. The pore structure and acid properties of core-shell materials were studied in detail by SEM, XRD, XRF, liquid static adsorption, N2 adsorption desorption, NH3-TPD and Py-FTIR.
  • 加载中
    1. [1]

      LIU S, WEN Z, YANG D, ZHU X. Application of HF modified Pt/ZSM-5 catalyst in benzene methylation with methanol[J]. Chin J Appl Chem,2016,33(5):571−576.

    2. [2]

      FAN Jing-xin, JING Wei-dong, YU Hai-bin, ZANG Jia-zhong, XING Shu-jian. Research progress in catalysts for selective alkylation of toluene and methanol[J]. Inorg Chem Ind,2013,45(6):62−64.  doi: 10.3969/j.issn.1006-4990.2013.06.020

    3. [3]

      HAN Li-hua, LIU Ping, GAO Jun-hua, ZHOU Hao, SUN Xiao-fang, LIU Zeng-hou, ZHANG Kan. Si, P and Mg-modified HZSM-5 catalyst for enhancing the para-selectivity in toluene/methanol alkylation[J]. Nat Gas Chem Ind,2019,44(3):1−6.

    4. [4]

      PHILIPPOU A, ANDERSON M W. Solid-state NMR investigation of the alkylation of toluene with methanol over basic zeolite X[J]. JACS, 1994, 116(13): 5774−5783.

    5. [5]

      ZHAN Jin-you, ZHANG Lu-lu, SUN Yao, SHEN Jian. Modified ZSM-5-SBA-15 and its alkylation performance for toluene with methanol[J]. J Fuel Chem Technol,2016,44(4):489−494.  doi: 10.3969/j.issn.0253-2409.2016.04.015

    6. [6]

      ZHU Z, CHEN Q, XIE Z, YANG W, LI C. The roles of acidity and structure of zeolite for catalyzing toluene alkylation with methanol to xylene[J]. Microporous Mesoporous Mater,2006,88(1/3):16−21.  doi: 10.1016/j.micromeso.2005.08.021

    7. [7]

      XIE Wen-jie, WANG Huan, QIN Yu-cai, ZHAI Peng, SONG Li-juan. Determination of mass transfer behavior of typical products of MTO (methanol to olefins) reactions over HZSM-5 zeolite[J]. J Fuel Chem Technol,2020,48(6):713−722.  doi: 10.3969/j.issn.0253-2409.2020.06.010

    8. [8]

      HUANG X, WANG R, PAN X, WANG C, FAN M, ZHU Y, WANG Y, JIN P. Catalyst design strategies towards highly shape-selective HZSM-5 for para-xylene through toluene alkylation[J]. Green Energy Environ, 2020, 5(4): 385−393.

    9. [9]

      ZHU Z, XIE Z, CHEN Q, KONG D, WEI L, YANG W, LI C. Chemical liquid deposition with polysiloxane of ZSM-5 and its effect on acidity and catalytic properties[J]. Microporous Mesoporous Mater,2007,101(1/2):169−175.  doi: 10.1016/j.micromeso.2006.12.016

    10. [10]

      TENG H, WANG J, REN X, CHEN D. Disproportionation of toluene by modified ZSM-5 zeolite catalysts with high shape-selectivity prepared using chemical liquid deposition with tetraethyl orthosilicate[J]. Chin J Chem Eng,2011,19(2):292−298.  doi: 10.1016/S1004-9541(11)60168-7

    11. [11]

      KIM J-H, ISHIDA A, OKAJIMA M, NIWA M. Modification of HZSM-5 by CVD of various silicon compounds and generation of para-selectivity[J]. J Catal,1996,161(1):387−392.  doi: 10.1006/jcat.1996.0196

    12. [12]

      BAUER F, CHEN W H, BILZ E, FREYER A, SAUERLAND V, LIU S B. Surface modification of nano-sized HZSM-5 and HFER by pre-coking and silanization[J]. J Catal,2007,251(2):258−270.  doi: 10.1016/j.jcat.2007.08.009

    13. [13]

      WU Chao, JI Dong, DONG Peng, LI Hong-wei, LI Gui-xian. The effect of boron on hzsm-5 zeolite acidity and shape selectivity[J]. J Mol Catal (China),2019,33(6):524−530.

    14. [14]

      TAO Jia-yi, ZHANG Jian-li, FAN Su-bing, MA Qing-xiang, ZHAO Tian-sheng. Effects of boron modification on the activity of HZSM-5 toward MTP[J]. J Fuel Chem Technol,2020,48(9):1105−1111.  doi: 10.3969/j.issn.0253-2409.2020.09.010

    15. [15]

      XUE Bing, WU Hao, WEN Lin-zhi, LIU Na, LI Yong-xin. Synthesis of p-xylene by alkylation of toluene over boric acid modified MCM-22 zeolite catalysts[J]. Chem Ind Eng Prog,2017,36(6):2177−2182.

    16. [16]

      JANARDHAN H L, SHANBHAG G V, HALGERI A B. Shape-selective catalysis by phosphate modified ZSM-5: Generation of new acid sites with pore narrowing[J]. Appl Catal A: Gen,2014,471(10):12−18.

    17. [17]

      LYU J, HU H, TAIT C, RUI J, LOU C, WANG Q, HAN W, ZHANG Q, PAN Z, LI X. Benzene alkylation with methanol over phosphate modified hierarchical porous ZSM-5 with tailored acidity[J]. Chin J Chem Eng,2017,25(9):1187−1194.

    18. [18]

      CABRAL DE MENEZES S M, LAM Y L, DAMODARAN K, PRUSKI M. Modification of H-ZSM-5 zeolites with phosphorus. 1. Identification of aluminum species by 27Al solid-state NMR and characterization of their catalytic properties[J]. Microporous Mesoporous Mater,2006,95(1/3):286−295.  doi: 10.1016/j.micromeso.2006.05.032

    19. [19]

      DAMODARAN K, WIENCH J W, CABRAL DE MENEZES S M, LAM Y L, TREBOSC J, AMOUREUX J-P, PRUSKI M. Modification of H-ZSM-5 zeolites with phosphorus. 2. Interaction between phosphorus and aluminum studied by solid-state NMR spectroscopy[J]. Microporous Mesoporous Mater,2006,95(1-3):296−305.  doi: 10.1016/j.micromeso.2006.05.034

    20. [20]

      HODALA J L, HALGERI A B, SHANBHAG G V. Phosphate modified ZSM-5 for the shape-selective synthesis of para-diethylbenzene: Role of crystal size and acidity[J]. Appl Catal A: Gen,2014,484:8−16.  doi: 10.1016/j.apcata.2014.07.006

    21. [21]

      WANG Jue, ZHAO Bi-ying, XIE You-chang. Correlations between the dispersion state of MgO and catalytic behavior of MgO/HZSM-5[J]. Acta Phys-Chim Sin,2001,17(11):966−971.  doi: 10.3866/PKU.WHXB20011102

    22. [22]

      ZI Qin, HUANG Xing-liang, SUN Ren-shan, CAO Zhong-yang, ZHANG Xin, GAO Yue, PENG Wen-yu. Effects of transition metal modification on alkylation of benzene with methanol over MgO/ZSM-5 catalyst[J]. Ind Catal,2018,26(1):46−52.  doi: 10.3969/j.issn.1008-1143.2018.01.007

    23. [23]

      LI J, KAI T, XI Z, ZHU Z. Highly-efficient conversion of methanol to p-xylene over shape-selective Mg-Zn-Si-HZSM-5 catalyst with fine modification of pore-opening and acidic properties[J]. Catal Sci Technol,2016,6(13):4802−4813.  doi: 10.1039/C5CY01979F

    24. [24]

      HU H, LYU J, CEN J, ZHANG Q, WANG Q, HAN W, RUI J, LI X. Promoting effects of MgO and Pd modification on the catalytic performance of hierarchical porous ZSM-5 for catalyzing benzene alkylation with methanol[J]. RSC Adv,2015,5(77):63044−63049.  doi: 10.1039/C5RA12589H

    25. [25]

      VU D V, MIYAMOTO M, NISHIYAMA N, ICHIKAWA S, EGASHIRA Y, UEYAMA K. Catalytic activities and structures of silicalite-1/H-ZSM-5 zeolite composites[J]. Microporous Mesoporous Mater,2008,115(1/2):106−112.  doi: 10.1016/j.micromeso.2007.12.034

    26. [26]

      AHN J H, KOLVENBACH R, AL-KHATTAF S S, JENTYS A, LERCHER J. Enhancing shape selectivity without loss of activity-novel mesostructured ZSM5 catalysts for methylation of toluene to p-xylene[J]. Chem Commun (Camb),2013,49(90):10584−10586.  doi: 10.1039/c3cc46197a

    27. [27]

      MIYAMOTO M, KAMEI T, NISHIYAMA N. Single crystals of ZSM-5/silicalite composites[J]. Adv Mater,2005,17(16):1985−1988.  doi: 10.1002/adma.200500522

    28. [28]

      PENG C, LIU Z, YONEZAWA Y, YANABA Y, KATADA N, MURAYAMA I, SEGOSHI S, OKUBO T, WAKIHARA T. Ultrafast post-synthesis treatment to prepare ZSM-5@Silicalite-1 as a core-shell structured zeolite catalyst[J]. Microporous Mesoporous Mater,2019,277:197−202.  doi: 10.1016/j.micromeso.2018.10.036

    29. [29]

      VANVU D, MIYAMOTO M, NISHIYAMA N, EGASHIRA Y, UEYAMA K. Selective formation of para-xylene over H-ZSM-5 coated with polycrystalline silicalite crystals[J]. J Catal,2006,243(2):389−394.  doi: 10.1016/j.jcat.2006.07.028

    30. [30]

      KONG De-jin, LIU Zhi-cheng, FANG Ding-ye. Epitaxial growth of core-shell ZSM-5/Silicalite-1 with shape selectivity[J]. Chin J Catal,2009,30(9):885−890.  doi: 10.3321/j.issn:0253-9837.2009.09.007

    31. [31]

      ARIAN G. Epitaxial growth of ZSM-5@Silicalite-1: A core-shell zeolite designed with passivated surface acidity[J]. ACS nano,2015,4(9):4006−4016.

    32. [32]

      YANG L, LIU Z, LIU Z, PENG W, LIU Y, LIU C. Correlation between H-ZSM-5 crystal size and catalytic performance in the methanol-to-aromatics reaction[J]. Chin J Catal,2017,38(4):683−690.  doi: 10.1016/S1872-2067(17)62791-8

    33. [33]

      KHARE R, MILLAR D, BHAN A. A mechanistic basis for the effects of crystallite size on light olefin selectivity in methanol-to-hydrocarbons conversion on MFI[J]. J Catal,2015,321:23−31.  doi: 10.1016/j.jcat.2014.10.016

    34. [34]

      NIU X, GAO J, WANG K, MIAO Q, DONG M, WANG G, FAN W, QIN Z, WANG J. Influence of crystal size on the catalytic performance of H-ZSM-5 and Zn/H-ZSM-5 in the conversion of methanol to aromatics[J]. Fuel Process Technol,2017,157:99−107.  doi: 10.1016/j.fuproc.2016.12.006

    35. [35]

      CHEN N Y, KAEDING W W, DWYER G. Para-directed aromatic reactions over shape-selective molecular sieve zeolite catalysts[J]. J Am Chem Soc,1979,101(22):6783−6784.  doi: 10.1021/ja00516a065

    36. [36]

      WANG C, ZHANG L, HUANG X, ZHU Y, MA D. Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene[J]. Nat Commun,2019,10(1):1−8.  doi: 10.1038/s41467-018-07882-8

    37. [37]

      WANG C, ZHANG Q, ZHU Y, ZHANG D, CHEN J, CHIANG FK. P-Xylene selectivity enhancement in methanol toluene alkylation by separation of catalysis function and shape-selective function[J]. Mol Catal,2017,433:242−249.  doi: 10.1016/j.mcat.2016.12.007

    38. [38]

      LIU Peng, SHEN Jian. Preparation of ZSM-5-SBA-15 composite molecular sieves and its performance for toluene alkylation with methanol[J]. J Fuel Chem Technol,2015,43(9):1147−1152.  doi: 10.3969/j.issn.0253-2409.2015.09.019

    39. [39]

      THOMMES M, KANEKO K, NEIMARK A V. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. I. U. P. A. C,2015,87(9/10):1051−1069.

    40. [40]

      JI Yong-jun, ZHANG Bin, ZHANG Kun, XU Le, PENG Hong-gen, WU Peng. Core/shell-structured ZSM-5@mesoporous silica composites for shape-selective alkylation of toluene with methanol[J]. Acta Chim Sin,2013,71(3):371−380.  doi: 10.6023/A12110980

    41. [41]

      GROEN J C, PEFFER L A A, PéREZ-RAMíREZ J. Pore size determination in modified micro- and mesoporous materials. pitfalls and limitations in gas adsorption data analysis[J]. Microporous Mesoporous Mater,2003,60(1/3):1−17.  doi: 10.1016/S1387-1811(03)00339-1

    42. [42]

      WU Bao-qiang, MA Xiao-xun, LIANG Bin, HAN Yun-da. Preparation of HZSM-5 zeolite assisted by glycerin and its catalytic performance for methane aromatization[J]. J Fuel Chem Technol,2020,48(7):821−832.

    43. [43]

      MORES D, STAVITSKI E, VERKLEIJ S P, LOMBARD A, CABIAC A, ROULEAU L, PATARI J, SIMON-MASSERON A, WECKHUYSEN B M. Core-shell H-ZSM-5/silicalite-1 composites: Brnsted acidity and catalyst deactivation at the individual particle level[J]. Phys Chem Chem Phys,2011,13(35):15985−15994.  doi: 10.1039/c1cp21324e

    44. [44]

      LIU C, LONG Y, WANG Z. Optimization of conditions for preparation of ZSM-5@silicalite-1 core-shell catalysts via hydrothermal synthesis[J]. Chin J Chem Eng,2018,26(10):2070−2076.  doi: 10.1016/j.cjche.2018.03.030

    45. [45]

      ZHAO Xiao-feng, LI Yan-chun, YUAN Ping, WANG Peng-fei, WANG Hao, DONG Mei, QIN Zhang-feng, FAN Wei-bing, WANG Jian-guo. Effect of seed number of MOR zeolites on the transalkylation reaction and the investigation of the reaction mechanism[J]. J Fuel Chem Technol,2017,45(9):1095−1104.  doi: 10.3969/j.issn.0253-2409.2017.09.010

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    3. [3]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    4. [4]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    5. [5]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    6. [6]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    7. [7]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    10. [10]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    11. [11]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    12. [12]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    13. [13]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    14. [14]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    15. [15]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    18. [18]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    19. [19]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    20. [20]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

Metrics
  • PDF Downloads(19)
  • Abstract views(2235)
  • HTML views(460)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return