Citation: Ming-Shan ZHANG, Teng-Ya LI, Yu LEI, Yan WU, Shu-Hai HE. Determination of Two Sulfonamides in Environmental Water Based on Dispersivesolid-Phase Extraction with MIL-101(Cr) Metal-Organic Framework[J]. Chinese Journal of Applied Chemistry, ;2021, 38(2): 236-244. doi: 10.19894/j.issn.1000-0518.200365 shu

Determination of Two Sulfonamides in Environmental Water Based on Dispersivesolid-Phase Extraction with MIL-101(Cr) Metal-Organic Framework

  • Corresponding author: Shu-Hai HE, heshuhai1981@163.com
  • Received Date: 7 December 2020
    Accepted Date: 12 January 2021

Figures(6)

  • Three metal-organic frameworks (MIL-101(Cr), MIL-101(Cr)-SO3H, MIL-101(Cr)-NH2) were used as adsorbents, and the adsorption properties of sulfadiazine and sulfadiazine were compared in environment water under different pH conditions by solid phase dispersion extraction. With MIL-101(Cr) as the best adsorbent, the main factors affecting the efficiency of adsorption and desorption, such as the amount of adsorbent used, adsorption time, type and amount of desorption solvent, and desorption time were investigated. The optimized extraction conditions were as follows: 10.0 mL of sample solution (pH=9.0) was extracted with 6.0 mg of MIL-101(Cr) adsorbent for 4.0 min, the supernatant was removed by centrifugation, and the sample was resolved with 1.5 mL of 2% (volume fraction) formic acid-methanol solution for 10.0 min. The results show that the linear range of two sulfonamides are 5.0~8000 μg/L, and r>0.9990. The detection limits of the method are 0.05 μg/L to 0.08 μg/L. The recoveries of the three spiked concentrations are from 71.2% to 91.9%. The relative standard deviations (RSDs) are in the range of 3.1%~8.5%.
  • 加载中
    1. [1]

      ZHANG G D, DONG W P, LIU X H. Occurrence, fate and risk assessment of antibiotics in water environment of China[J]. Environ Chem, 2018,37(7):1491-1500.  

    2. [2]

      HARTMANN A, ALDER A C, KOLLER T. Identification of fluoroquinolone antibiotics as the main source of umuC genotoxicity in native hospital wastewater[J]. Environ Toxicol Chem, 1998,17(3):377-382. doi: 10.1002/etc.5620170305

    3. [3]

      YU S, LI J, MAO D Q. Sources, dissemination, fate and pollution control of antibiotic resistance genes in wastewater(sewage) treatment system[J]. Environ Sci, 2013,32(11):2059-2071.  

    4. [4]

      JIN L, JIANG L, HAN Q. Distribution characteristics and health risk assessment of thirteen sulfonamides antibiotics in a drinking water source in East China[J]. Environ Sci, 2013,32(11):2059-2071.  

    5. [5]

      BEN Y J, HU M, ZHANG X Y. Efficient detection and assessment of human exposure to trace antibiotic residues in drinking water[J]. Water Res, 2020,175115699. doi: 10.1016/j.watres.2020.115699

    6. [6]

      WU X Y, ZHOU H, ZHU R. Occurrence, distribution and ecological risk of antibiotics in surface water of the Gonghu bay, Taihu Lake[J]. Environ Sci, 2016,37(12):4596-4604.  

    7. [7]

      GURUGE K S, GOSWAMI P, TANOUE R. First nationwide investigation and environmental risk assessment of 72 pharmaceuticals and personal care products from Sri Lankan surface waterways[J]. Sci Total Environ, 2019,690:683-695. doi: 10.1016/j.scitotenv.2019.07.042

    8. [8]

      DU J, ZHAO H X, CHEN J W. Simultaneous determination of 23 antibiotics in mariculture water using solid-phase extraction and high performance liquid chromatography-tandem mass spectrometry[J]. Chinese J Chromatogr, 2015,33(4):348-353.  

    9. [9]

      JIE Y W, YU C S, LI F F, et al. Distribution characteristic of antibiotics and antibiotic resistance genes in wastewater treatment plants[J/OL]. Environ Sci: 1-11[2021-01-08].https://doi.org/10.13227/j.hjkx.202005304.

    10. [10]

      ZHANG Q, XIN Q, ZHU J M. The antibiotic contaminations in the main water bodies in China and the associated environmental and human health impacts[J]. Environ Chem, 2014,33(7):1075-1083.  

    11. [11]

      YANG C X, YANG X Q, YAN X P. Preparation of metal-organic framework MIL-101(Cr) incorporated polymer monolithic column for on-line solid-phase extraction of phenols[J]. Chinese J Chromatogr, 2019,37(8):824-830.  

    12. [12]

      ROWSELL J L C, YAGHI O M. Metal-organic frameworks: a new class of porous materials[J]. Micropor Mesopor Mater, 2004,73(1):3-14.  

    13. [13]

      LU X Q, WEI S X, WANG Z J. Design on experiment of gas capture and separation in nanoporous materials[J]. Exp Technol Manage, 2020,37(3):147-152, 164.  

    14. [14]

      ZHU M Y, CHEN Q, TONG W J. Preparation and application of Fe3O4 nanomaterials[J]. Prog Chem, 2017,29(11):1366-1394.  

    15. [15]

      CUI W, ZHANG W, LIU L. Adsorption behavior and mechanism of functional mental organic frameworks for sulfachloropyridazine in water.[J]. Environ Chem, 2020,39(1):80-88.  

    16. [16]

      HU H P, LIU S Q, CHEN C Y. Two novel zeolitic imidazolate frameworks (ZIFs) as sorbents for solid-phase extraction (SPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples[J]. Analyst, 2014,22(139):5818-5826.

    17. [17]

      JIANG S J, WANG H W. Preparation of magnetic metal organic framework Fe3O4@ZIF-8 and its high efficient adsorption towards azo dye Congo Red[J]. Chinese J Environ Eng, 2019,13(10):2347-2356.  

    18. [18]

      LI X M, WANG X K, WU Y Q. Determination of N-nitrosamines in water samples based on the solid-phase extraction with metal-organic framework[J]. Environ Chem, 2019,38(6):1258-1265.  

    19. [19]

      DHAKA S, KUMAR R, DEEP A. Metal-organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments[J]. Coord Chem Rev, 2019,380:330-352.  

    20. [20]

      LIU K, ZHANG S, HU X. Understanding the adsorption of PFOA on MIL-101(Cr)-based anionic-exchange metal-organic frameworks: comparing DFT calculations with aqueous sorption experiments[J]. Environ Sci Technol, 2015,49(14):8657-65.

    21. [21]

      SHI W N, ZHU Y Q, SHEN C. Water sorption properties of functionalized MIL-101(Cr)-X (X=-NH2, -O3H, -H, -CH3, -F) based composites as thermochemical heat storage materials[J]. Micropor Mesopor Mater, 2019,285:129-136.

    22. [22]

      TANG K R, ZHANG Z T, LEI T. Determination of fluoroquinolone antibiotic in milk with graphene HF-SPME-HPLC[J]. Sci Technol Food Ind, 2019,40(18):243-249.  

    23. [23]

      GAO L, WANG P, CHEN Z X. Determination of 12 kinds of sulfonamide antibiotic residues in fishery water using magnetic solid phase extraction-ultra high performance liquid chromatography coupled with triple quadrupole massspectrometry[J]. Chinese Fish Qual Stand, 2020,10(1):36-42.  

    24. [24]

      WANG Y N, PENG J, XIE S. Determination of 40 antibiotics in surface water by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry[J]. Environ Chem, 2020,39(1):188-196.  

    25. [25]

      SHEN Y Y, RAO G W, CAI J Y. Determination of sulfonamides in environmental water samples by liquid phase microextraction based on solidification of floating organic droplet coupled with high performance liquid chromatography[J]. Chem Anal Meter, 2020,29(5):49-53, 79.  

    26. [26]

      ZHANG M S, LI T Y, CAO X C. Determination of 19 sulfonamides residues in surface water by liquid-liquid extraction with UPLC-MS/MS[J]. Environ Pollut Control, 2020,42(7):838-842.  

    27. [27]

      FU J, ZHOU J J, LI J. Determination of 10 sulfonamides in drinking water by on-line solid phase extraction-high performance liquid chromatography-tandem mass spectrometry[J]. Environ Res Monit, 2019,32(1):1-5.  

    28. [28]

      ZHOU C Y, LUO J, WANG Y. Analysis of sulfonamides in environmental water samples by high performance liquid chromatography with online micro-solid-phase extraction[J]. J Instrum Anal, 2018,37(12):1451-1456.  

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    12. [12]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    13. [13]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    14. [14]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    15. [15]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    16. [16]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    17. [17]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    20. [20]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

Metrics
  • PDF Downloads(23)
  • Abstract views(3336)
  • HTML views(288)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return