Citation: Cheng SHI, Heng-Wei ZHOU, Ming-Ming DING, Feng YE, Tong-Fei SHI. A Hyperelastic Mixed Constitutive Model for Rubber Based on Molecular Chain Statistical Theory[J]. Chinese Journal of Applied Chemistry, ;2021, 38(2): 228-235. doi: 10.19894/j.issn.1000-0518.200325 shu

A Hyperelastic Mixed Constitutive Model for Rubber Based on Molecular Chain Statistical Theory

Figures(4)

  • Rubber materials are widely used in practice because of their unique hyperelasticity. The analysis of the stress-strain relationship can provide theoretical guidance for the engineering application of rubber mechanical properties. In order to describe the mechanical properties of rubber materials more accurately, a hybrid hyperelastic constitutive model was proposed in this paper. The new model is based on the Gaussian model and 8-chain model, which are coupled by the weight function related to the stretching ratio. When the stretching ratio is small, the new model degenerates into Gaussian form; When the stretching ratio is large, the new model can improve the deficiency of 8-chain model in small deformation by regulating of the weight function. We select experiment data from three aspects to verify the applicability of the new model: Stress-strain curve of orientation hardening, stress-strain curve of non-oriented hardening, stress-strain curve of different stretch ratios. We carry on the fitting verification from uniaxial tension, biaxial tension and pure shear experiments, respectively. The results show that the new model retains the advantages of Gaussian model in small deformation range and 8-chain model in large deformation range at the same time and has no dependence on stretching ratios and stress-strain curve forms. It breaks through the limitation of Gaussian model and 8-chain model, and provides a new idea for prediction of rubber hyperelastic mechanical properties.
  • 加载中
    1. [1]

      DING F, ZHANG H, DING M M. Theoretical models for stress-strain curves of elastomer materials[J]. Acta Polym Sin, 2019,50(12):1357-1366.  

    2. [2]

      PENG X F, LI L X. State of the art of constitutive relations of hyperelastic materials[J]. Chinese J Theor Appl Mech, 2020,52(5):1221-1232.  

    3. [3]

      DESTRADE M, SACCOMANDI G, SGURA I. Methodical fitting for mathematical models of rubber-like materials[J]. Proc Roy Soc A, 2017,473(2198)20160811. doi: 10.1098/rspa.2016.0811

    4. [4]

      PUGLISI G, SACCOMANDI G. Multiscale modelling of rubber-like materials and soft tissues: an appraisal[J]. Proc Roy Soc A, 2016,472(2187)20160060. doi: 10.1098/rspa.2016.0060

    5. [5]

      MOONEY M A. Theory of large elastic deformation[J]. J Appl Phys, 1940,11(9):582-592. doi: 10.1063/1.1712836

    6. [6]

      TRELOAR L R G. The elasticity of a network of long-chain molecules. I[J]. Trans Faraday Soc, 1946,42.  

    7. [7]

      RIVLIN R S. Large elastic deformations of isotropic materials. iv. further developments of the general theory[J]. Philos Trans Roy Soc Lond Ser A, 1948,241(835):379-397. doi: 10.1098/rsta.1948.0024

    8. [8]

      OGDEN R. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids[J]. Proc Ror Soc A, 1972,326(1567):565-584.  

    9. [9]

      WAENER H R. Theory and rheology of dilute suspensions of finitely extendible dumbbells[J]. Ind Eng Chem Fundam, 1972,11(3):379-387. doi: 10.1021/i160043a017

    10. [10]

      KILIAN H G. Equation of state of real networks[J]. Polymer, 1981,22(2):209-217. doi: 10.1016/0032-3861(81)90200-7

    11. [11]

      YEOH O H. Some forms of the strain energy function for rubber[J]. Rubber Chem Technol, 1993,66(5):754-771. doi: 10.5254/1.3538343

    12. [12]

      GENT A N. A new constitutive relation for rubber[J]. Rubber Chem Technol, 1996,69(1):59-61. doi: 10.5254/1.3538357

    13. [13]

      SHARIFF M. Strain energy function for filled and unfilled rubberlike material[J]. Rubber Chem Technol, 2000,73(1):1-18. doi: 10.5254/1.3547576

    14. [14]

      CARROLL M M. A strain energy function for vulcanized rubbers[J]. J Elast, 2011,103(2):173-187. doi: 10.1007/s10659-010-9279-0

    15. [15]

      JAMES H M, GUTH E. Theory of the elastic properties of rubber[J]. J Chem Phys, 1943,11(10):455-481. doi: 10.1063/1.1723785

    16. [16]

      FLORY P J, REHNER J. Statistical mechanics of cross-linked polymer networks I. rubberlike elasticity[J]. J Chem Phys, 1943,11(11):512-520. doi: 10.1063/1.1723791

    17. [17]

      FLORY P J. Network structure and the elastic properties of vulcanized rubber[J]. Chem Rev, 1944,35(1):51-75. doi: 10.1021/cr60110a002

    18. [18]

      ARRUDA E M, BOYCE M C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials[J]. J Mech Phys Solids, 1993,41(2):389-412. doi: 10.1016/0022-5096(93)90013-6

    19. [19]

      WU P D, GIESSEN E V D. On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers[J]. J Mech Phys Solids, 1993,41(3):427-456. doi: 10.1016/0022-5096(93)90043-F

    20. [20]

      MARCKMANN G, VERRON E. Comparison of hyperelastic models for rubber-like materials[J]. Rubber Chem Technol, 2006,79(5):835-858. doi: 10.5254/1.3547969

    21. [21]

      KUHN W, GRUN F. Relations between elastic constants and the strain birefringence of high-elastic substances[J]. Colloid Polym Sci, 1942,101(3):248-271.

    22. [22]

      TRELOAR L R G, RIDING G. A non-gaussian theory for rubber in biaxial strain. I. mechanical properties[J]. Proc Roy Soc A, 1979,369(1737):261-280.  

    23. [23]

      MANSOURI M R, DARIJANI H. Constitutive modeling of isotropic hyperelastic materials in an exponential framework using a self-contained approach[J]. Int J Solids Struct, 2014,51(25/26):4316-4326.  

    24. [24]

      TRELOAR L R G. Stress-strain data for vulcanised rubber under various types of deformation[J]. Trans Faraday Soc, 1944,40:59-69. doi: 10.1039/tf9444000059

    25. [25]

      ATTARD M M, HUNT G W. Hyperelastic constitutive modeling under finite strain[J]. Int J Eng Sci, 2004,41(18/19):5327-5350.  

  • 加载中
    1. [1]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    2. [2]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(24)
  • Abstract views(2442)
  • HTML views(467)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return