Citation: Guang-Zeng CHENG, Shuai LIU, Huan-Lei WANG. Potential High-Performance Anode Material for Potassium Ion Batteries: Antimony[J]. Chinese Journal of Applied Chemistry, ;2021, 38(2): 170-180. doi: 10.19894/j.issn.1000-0518.200243 shu

Potential High-Performance Anode Material for Potassium Ion Batteries: Antimony

  • Corresponding author: Shuai LIU, liushuai6980@ouc.edu.cn Huan-Lei WANG, huanleiwang@ouc.edu.cn
  • Received Date: 13 August 2020
    Accepted Date: 16 October 2020

    Fund Project: the Shandong Provincial Key R & D Plan and the Public Welfare Special Program, China 2019GGX102038the Fundamental Research Funds for the Central Universities 201822008the Fundamental Research Funds for the Central Universities 201941010the Qingdao City Programs for Science and Technology Plan Projects 19-6-2-77-cg

Figures(7)

  • In recent years, with the increasing demand for energy storage devices, potassium ion batteries have attracted more and more attention. The physical and chemical properties of potassium is similar to those of lithium, and the reserve of potassium in the earth's crust is abundant, so potassium ion battery has a promising prospect in the field of energy storage. However, due to the fact that the actual capacity of electrode materials is far less than the theoretical capacity, the performance of potassium ion battery is still inadequate. Metallic antimony has a high theoretical capacity and is widely investigated as electrodes. However, too large volume change during charging-discharging process leads to the poor stability. The structural stability can be improved by controlling the morphology, alloying and introducing carbon framework. In this paper, the research progress of antimony materials as anodes for potassium ion batteries is introduced, and the application of antimony electrode is prospected.
  • 加载中
    1. [1]

      PAN H, HU Y S, CHEN L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy Environ Sci, 2013,6(8):2338-2360. doi: 10.1039/c3ee40847g

    2. [2]

      TAO L, YANG Y, WANG H. Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: performance and storage mechanisms[J]. Energy Storage Mater, 2020,27:212-225. doi: 10.1016/j.ensm.2020.02.004

    3. [3]

      LU G, WANG H, ZHENG Y. Metal-organic framework derived N-doped CNT@porous carbon for high-performance sodium and potassium-ion storage[J]. Electrochim Acta, 2019,319:541-551. doi: 10.1016/j.electacta.2019.07.026

    4. [4]

      FAN L, LIU Q, CHEN S. Potassium-based dual ion battery with dual-graphite electrode[J]. Small, 2017,13(30)1701011. doi: 10.1002/smll.201701011

    5. [5]

      RAJAGOPALAN R, TANG Y, JI X. Advancements and challenges in potassium ion batteries: a comprehensive review[J]. Adv Funct Mater, 2020,30(12)1909486. doi: 10.1002/adfm.201909486

    6. [6]

      WU X, CHEN Y, XING Z. Advanced carbon-based anodes for potassium-ion batteries[J]. Adv Energy Mater, 2019,9(21)1900343. doi: 10.1002/aenm.201900343

    7. [7]

      SONG K, LIU C, MI L. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries[J]. Small, 20191903194.  

    8. [8]

      XIONG P, WU J, ZHOU M. Bismuth-antimony alloy nanoparticle@porous carbon nanosheet composite anode for high-performance potassium-ion batteries[J]. ACS Nano, 2019,14(1):1018-1026.  

    9. [9]

      KIM D S, BAE J, KWON S H. Synergistic effect of antimony-triselenide on addition of conductive hybrid matrix for high-performance lithium-ion batteries[J]. J Alloys Comp, 2020,828154410. doi: 10.1016/j.jallcom.2020.154410

    10. [10]

      ZHAO Y, MANTHIRAM A. High-capacity, high-rate Bi-Sb Alloy anodes for lithium-ion and sodium-ion batteries[J]. Chem Mater, 2015,27(8):3096-3101. doi: 10.1021/acs.chemmater.5b00616

    11. [11]

      WANG J, FAN L, LIU Z. In situ alloying strategy for exceptional potassium ion batteries[J]. ACS Nano, 2019,13(3):3703-3713. doi: 10.1021/acsnano.9b00634

    12. [12]

      GAO H, NIU J, ZHANG C. A dealloying synthetic strategy for nanoporous bismuth antimony anodes for sodium ion batteries[J]. ACS Nano, 2018,12(4):3568-3577. doi: 10.1021/acsnano.8b00643

    13. [13]

      ZHENG W, YU X, GUO Z. Magnetron sputtering deposition of MSb (M=Fe, Ni, Co) thin films as negative electrodes for Li-ion and Na-ion batteries[J]. Mater Res Express, 2019,6(5)056410. doi: 10.1088/2053-1591/ab00cd

    14. [14]

      WANG S, XIONG P, GUO X. A stable conversion and alloying anode for potassium-ion batteries: a combined strategy of encapsulation and confinement[J]. Adv Funct Mater, 20202001588.  

    15. [15]

      GABAUDAN V, BERTHELOT R, STIEVANO L. Inside the alloy mechanism of Sb and Bi electrodes for K-Ion batteries[J]. J Phys Chem C, 2018,122(32):18266-18273. doi: 10.1021/acs.jpcc.8b04575

    16. [16]

      FAN S, SUN T, RUI X. Cooperative enhancement of capacities in nanostructured SnSb/carbon nanotube network nanocomposite as anode for lithium ion batteries[J]. J Power Sources, 2012,201:288-293. doi: 10.1016/j.jpowsour.2011.10.137

    17. [17]

      HUANG Z, CHEN Z, DING S. Multi-protection from nano channels and graphene of SnSb-graphene-carbon composites ensuring high properties for potassium-ion batteries[J]. Solid State Ionics, 2018,324:267-275. doi: 10.1016/j.ssi.2018.07.019

    18. [18]

      YANG K, TANG J, LIU Y. Controllable synthesis of peapod-like Sb@C and corn-like C@Sb nanotubes for sodium storage[J]. ACS Nano, 2020,14(5):5728-5737. doi: 10.1021/acsnano.0c00366

    19. [19]

      YUAN Y, JAN S, WANG Z. A simple synthesis of nanoporous Sb/C with high Sb content and dispersity as an advanced anode for sodium ion batteries[J]. J Mater Chem A, 2018,6(14):5555-5559. doi: 10.1039/C8TA00592C

    20. [20]

      PHAM X M, NGO D T, LEH T T. A self-encapsulated porous Sb-C nanocomposite anode with excellent Na-ion storage performance[J]. Nanoscale, 2018,10(41):19399-19408. doi: 10.1039/C8NR06182C

    21. [21]

      GABAUDAN V, TOUJA J, COT D. Double-walled carbon nanotubes, a performing additive to enhance capacity retention of antimony anode in potassium-ion batteries[J]. Electrochem Common, 2019,105106493. doi: 10.1016/j.elecom.2019.106493

    22. [22]

      HAN Y, LI T, LI Y. Stabilizing antimony nanocrystals within ultrathin carbon nano sheets for high-performance K-ion storage[J]. Energy Storage Mater, 2019,20:46-54. doi: 10.1016/j.ensm.2018.11.004

    23. [23]

      YI Z, LIN N, ZHANG W. Preparation of Sb nanoparticles in molten salt and their potassium storage performance and mechanism[J]. Nanoscale, 2018,10(27):13236-13241. doi: 10.1039/C8NR03829E

    24. [24]

      LUO W, LI F, ZHANG W. Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries[J]. Nano Res, 2019,12(5):1025-1031. doi: 10.1007/s12274-019-2335-6

    25. [25]

      LIU S, FENG J, BIAN X. The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries[J]. Energy Environ Sci, 2016,9(4):1229-1236. doi: 10.1039/C5EE03699B

    26. [26]

      WANG H, WU X, QI X. Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries[J]. Mater Res Bull, 2018,103:32-37. doi: 10.1016/j.materresbull.2018.03.018

    27. [27]

      AN Y, TIAN Y, CI L. Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries[J]. ACS Nano, 2018,12(12):12932-12940. doi: 10.1021/acsnano.8b08740

    28. [28]

      LIANG L, XU Y, WANG C. Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries[J]. Energy Environ Sci, 2015,8(10):2954-2962. doi: 10.1039/C5EE00878F

    29. [29]

      WANG Z M, YI Z, ZHONG M. Research progress of Sb based anode materials for lithium Ion batteries[J]. Chinese J Appl Chem, 2018,35(7):745-755.  

    30. [30]

      ZHANG Y J, ZHANG J F, DUAN J G. Research progress of Sb based anode materials for sodium ion batteries[J]. Materials Reports, 2020,34(11):11106-11113.  

    31. [31]

      LIU Q, FAN L, CHEN S. Antimony-graphite composites for a high-performance potassium-ion battery[J]. Energy Technol, 2019,7(10)1900634. doi: 10.1002/ente.201900634

    32. [32]

      KO Y N, CHOI S H, KIM H. One-pot formation of Sb-carbon microspheres with graphene sheets: potassium-ion storage properties and discharge mechanisms[J]. ACS Appl Mater Interfaces, 2019,11(31):27973-27981. doi: 10.1021/acsami.9b08929

    33. [33]

      YANG X, ZHANG R. High-capacity graphene-confined antimony nanoparticles as a promising anode material for potassium-ion batteries[J]. J Alloys Compd, 2020155191.  

    34. [34]

      CHENG N, ZHAO J, FAN L. Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium-ion batteries anode[J]. Chem Commun, 2019,55(83):12511-12514. doi: 10.1039/C9CC06561J

    35. [35]

      WANG H, WU X, QI X. Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries[J]. Mater Res Bull, 2018,103:32-37. doi: 10.1016/j.materresbull.2018.03.018

    36. [36]

      HAN C, HAN K, WANG X. Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion batteries[J]. Nanoscale, 2018,10(15):6820-6826. doi: 10.1039/C8NR00237A

    37. [37]

      ZHENG J, YANG Y, FAN X. Extremely Stable antimony carbon composite anodes for potassium-ion batteries[J]. Energy Environ Sci, 2019,12(2):615-623. doi: 10.1039/C8EE02836B

    38. [38]

      LIU D, YANG L, CHEN Z. Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries[J]. Sci Bull, 2020,65(12):1003-1012. doi: 10.1016/j.scib.2020.03.019

    39. [39]

      GUO S, LI H, LU Y. Lattice softening enables highly reversible sodium storage in anti-pulverization Bi-Sb alloy/carbon nanofibers[J]. Energy Storage Mater, 2020,27:270-278. doi: 10.1016/j.ensm.2020.02.003

    40. [40]

      GABAUDAN V, BERTHELOT R, SOUGRATI M T. SnSb vs. Sn: improving the performance of Sn-based anodes for K-ion batteries by synergetic alloying with Sb[J]. J Mater Chem A, 2019,7(25):15262-15270. doi: 10.1039/C9TA03760H

    41. [41]

      WANG Z, DONG K, WANG D. A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries[J]. J Mater Chem A, 2019,7(23):14309-14318. doi: 10.1039/C9TA03851E

    42. [42]

      HAN J, ZHU K, LIU P. N-doped CoSb@C nanofibers as a self-supporting anode for high-performance K-ion and Na-ion batteries[J]. J Mater Chem A, 2019,7(44):25268-25273. doi: 10.1039/C9TA09643D

    43. [43]

      ZHANG Y, LI M, HUANG F. 3D porous Sb-Co nanocomposites as advanced anodes for sodium-ion batteries and potassium-ion batteries[J]. Appl Surf Sci, 2020,499143907. doi: 10.1016/j.apsusc.2019.143907

  • 加载中
    1. [1]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    9. [9]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    12. [12]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    13. [13]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    14. [14]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    15. [15]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    18. [18]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    19. [19]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(92)
  • Abstract views(3740)
  • HTML views(821)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return