Citation: Wei-Guang YANG, Yu-Peng CAO, Hong-Bin JU, Ya-Kui WANG, Tao GENG, Ya-Jie JIANG. Synthesis and Properties of Oleamide Quaternary Ammonium Gemini Surfactant[J]. Chinese Journal of Applied Chemistry, ;2021, 38(2): 220-227. doi: 10.19894/j.issn.1000-0518.200241 shu

Synthesis and Properties of Oleamide Quaternary Ammonium Gemini Surfactant

  • Corresponding author: Ya-Jie JIANG, jiangyajie2004@163.com
  • Received Date: 12 August 2020
    Accepted Date: 15 October 2020

    Fund Project: the National Key Research and Development Project of China 2017YFB0308900the Project of JALA Research Funds JALA 2018

Figures(6)

  • Oleamide quaternary ammonium Gemini surfactants GS-1, GS-2, GS-3 were synthesized by the reaction of Oleamide propyl dimethylamine and 1, 3-dichloro-2-propanol, 1, 4-dibromo-2-butene and 1, 4-dibromo-butane, respectively. The structures of GS-1, GS-2, and GS-3 were characterized by Fourier-transform infrared (FT-IR) spectrometry and proton nuclear magnetic resonance (1H NMR), and their Krafft temperature, surface activity, emulsification performance, foam performance, and wettability were measured. The results show that three kinds of Gemini surfactants GS-1, GS-2, GS-3 are successfully prepared, and their Krafft temperatures are all less than 0℃, which provides a theoretical possibility for their use in low temperature environments with maintained high surface activity. Then, the critical micelle concentration (CMC) values of GS-1, GS-2, GS-3 are 7.7×10-5, 7.08×10-5, and 2.63×10-6 mol/L, respectively, which are consistent with the expected results. The CMC value of the Gemini surfactant is 1~2 orders of magnitude lower than that of the conventional surfactant single alkyl chain. In addition, the synthesized surfactants all show good surface a ctivity, emulsifying properties, and the ability to stabilize foam.
  • 加载中
    1. [1]

      TAWFIK S M. Synthesis, surface, biological activity and mixed micellar phase properties of some biodegradable gemini cationic surfactants containing oxycarbonyl groups in the lipophilic part[J]. J Ind Eng Chem, 2015,28:171-183. doi: 10.1016/j.jiec.2015.02.011

    2. [2]

      WANG Y K, JIANG Y J, GENG T. Synthesis, surface/interfacial properties, and biological activity of amide-based gemini cationic surfactants with hydroxyl in the spacer group[J]. Colloids Surf A, 2019,563:1-10. doi: 10.1016/j.colsurfa.2018.11.061

    3. [3]

      MENGER F M, KEIPER J S, AZOV V. Gemini surfactants with acetylenic spacers[J]. Langmuir, 2000,16(5):2062-2067. doi: 10.1021/la9910576

    4. [4]

      SHARMA R, KAMAL A, ABDINEJAD M. Advances in the synthesis, molecular architectures and potential applications of gemini surfactants[J]. Adv Colloid Interface Sci, 2017,248:35-68. doi: 10.1016/j.cis.2017.07.032

    5. [5]

      HASANOV E E, RAHIMOV R A, ABDULLAYEV Y. New class of cocogem surfactants based on hexamethylenediamine, propylene oxide, and long chain carboxylic acids: theory and application[J]. J Ind Eng Chem, 2020,86:123-135. doi: 10.1016/j.jiec.2020.02.019

    6. [6]

      ANDREOZZI P, PONS R, PÉREZ L. Gemini surfactant binding onto hydrophobically modified silica nanoparticles[J]. J Phys Chem C, 2008,112(32):12142-12148. doi: 10.1021/jp8026989

    7. [7]

      YOUSEFI A, JAVADIAN S, NESHATI J. A new approach to study the synergistic inhibition effect of cationic and anionic surfactants on the corrosion of mild steel in HCl solution[J]. Ind Eng Chem Res, 2014,53(13):5475-5489. doi: 10.1021/ie402547m

    8. [8]

      FENG L W, YIN C J, ZHANG H L. Cationic Gemini surfactants with a bipyridyl spacer as corrosion inhibitors for carbon steel[J]. ACS Omega, 2018,3(12):18990-18999. doi: 10.1021/acsomega.8b03043

    9. [9]

      LUO X H, ZHONG J W, ZHOU Q L. Cationic reduced graphene oxide as self-aligned nanofiller in the epoxy nanocomposite coating with excellent anticorrosive performance and its high antibacterial activity[J]. ACS Appl Mater Interfaces, 2018,10(21):18400-18415. doi: 10.1021/acsami.8b01982

    10. [10]

      GUO N N, ZHENG M Y, WANG T R. Application of quaternary ammonium gemini surfactant in leather industry[J]. Leather Chem, 2019,36(4):24-29.

    11. [11]

      LV Q C, LI Z M, LI B F. Study of nanoparticle surfactant-stabilized foam as a fracturing fluid[J]. Ind Eng Chem Res, 2015,54(38):9468-9477. doi: 10.1021/acs.iecr.5b02197

    12. [12]

      LI K X, JING X Q, HE S. Static adsorption and retention of viscoelastic surfactant in porous media: EOR implication[J]. Energy Fuels, 2016,30(11):9089-9096. doi: 10.1021/acs.energyfuels.6b01732

    13. [13]

      FU L P, LIAO K L, GE J J. Synergistic effect of sodium p-perfluorononenyloxybenzenesulfonate and alkanolamide compounding system used as cleanup additive in hydraulic fracturing[J]. Energy Fuels, 2020,34(6):7029-7037. doi: 10.1021/acs.energyfuels.0c01043

    14. [14]

      LIU X M, SONG C, WANG S Y. Synthesis and properties of cationic Gemini surfactants with amide group[J]. Chem Res Appl, 2011,23(2):184-188.

    15. [15]

      SUN Y, PAN Ha, HAN F. Synthesis and properties of quaternary ammonium gemini surfactants with hydroxyl in head groups[J]. China Surfactant Deterg Cosmet, 2019,49(3):135-140.

    16. [16]

      WU Z F, LI Y L, LI J. Study on the properties and self-assembly of fatty alcohol ether carboxylic ester anionic surfactant and cationic surfactant in a mixed system[J]. New J Chem, 2019,43(31):12494-12502. doi: 10.1039/C9NJ02407G

    17. [17]

      GUO H, ZHUANG Y W, PANG H Y. Studies on the reaction mechanism of cationic quaternary ammonium gemini serfactant by IR spectroscopy[J]. Spectrosc Spectr Anal, 2018,38(10):3-4.

    18. [18]

      DAVEY T M, DUCKER W A, HAYMAN A R. Krafft temperature depression in quaternary ammonium bromide surfactants[J]. Langmuir, 1998,14(12):3210-3213. doi: 10.1021/la9711894

    19. [19]

      HOQUE J, AKKAPEDDI P, YARLAGADDA V. Cleavable cationic antibacterial amphiphiles: synthesis, mechanism of action, and cytotoxicities[J]. Langmuir, 2012,28(33):12225-12234. doi: 10.1021/la302303d

    20. [20]

      PEI X M, YOU Y, ZHAO J X. Adsorption and aggregation of 2-hydroxyl-propanediyl-α, ω-bis(dimethyldodecyl ammonium bromide) in aqueous solution: effect of intermolecular hydrogen-bonding[J]. J Colloid Interface Sci, 2010,351(2):457-265. doi: 10.1016/j.jcis.2010.07.076

    21. [21]

      LIU X M, LIAO X, ZHANG S H. Physicochemical properties of noncovalently constructed sugar-based pseudogemini surfactants: evaluation of linker length influence[J]. J Chem Eng Data, 2019,64(1):60-68. doi: 10.1021/acs.jced.8b00459

    22. [22]

      ROSEN M J, KUNJAPPU J T. Surfactants and interfacial phenomena[M]. CUI Z G, JIANG J Z, et al. Trans. 5th Ed. Trans. Beijing: Chemical Industry Press, 2014: 44-45.

    23. [23]

      XU D Q, NI X Y, ZHANG C Y. Synthesis a nd properties of biodegradable cationic gemini surfactants with diester and flexible spacers[J]. J Mol Liq, 2017,240:542-548. doi: 10.1016/j.molliq.2017.05.092

    24. [24]

      ABO-RIYA M, TANTAWY A H, EL-DOUGDOUG W. Synthesis and evaluation of novel cationic gemini surfactants based on guava crude fat as petroleum-collecting and dispersing agents[J]. J Mol Liq, 2016,221:642-650. doi: 10.1016/j.molliq.2016.05.083

    25. [25]

      WANG G Y, QU W S, DU Z P. Adsorption and aggregation behavior of tetrasiloxane-tailed surfactants containing oligo(ethylene oxide) methyl ether and a sugar moiety[J]. J Phys Chem B, 2011,115(14):3811-3818. doi: 10.1021/jp110578u

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    6. [6]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    7. [7]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    8. [8]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    9. [9]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    10. [10]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    11. [11]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    12. [12]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    13. [13]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    14. [14]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    15. [15]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    16. [16]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    17. [17]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    18. [18]

      Xia Shu Longtian Sima Jiali Wang Jiacheng Chu Xieyidai·Yusunjiang Mubareke·Maimaitijiang Yingwei Lu Yan Wang . Analysis of the Report Generated by the QuadraSorb evo BET Surface Area Analyzer. University Chemistry, 2025, 40(5): 391-400. doi: 10.12461/PKU.DXHX202411013

    19. [19]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    20. [20]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

Metrics
  • PDF Downloads(47)
  • Abstract views(5631)
  • HTML views(1021)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return