Citation: Wei-Guang YANG, Yu-Peng CAO, Hong-Bin JU, Ya-Kui WANG, Tao GENG, Ya-Jie JIANG. Synthesis and Properties of Oleamide Quaternary Ammonium Gemini Surfactant[J]. Chinese Journal of Applied Chemistry, ;2021, 38(2): 220-227. doi: 10.19894/j.issn.1000-0518.200241 shu

Synthesis and Properties of Oleamide Quaternary Ammonium Gemini Surfactant

  • Corresponding author: Ya-Jie JIANG, jiangyajie2004@163.com
  • Received Date: 12 August 2020
    Accepted Date: 15 October 2020

    Fund Project: the National Key Research and Development Project of China 2017YFB0308900the Project of JALA Research Funds JALA 2018

Figures(6)

  • Oleamide quaternary ammonium Gemini surfactants GS-1, GS-2, GS-3 were synthesized by the reaction of Oleamide propyl dimethylamine and 1, 3-dichloro-2-propanol, 1, 4-dibromo-2-butene and 1, 4-dibromo-butane, respectively. The structures of GS-1, GS-2, and GS-3 were characterized by Fourier-transform infrared (FT-IR) spectrometry and proton nuclear magnetic resonance (1H NMR), and their Krafft temperature, surface activity, emulsification performance, foam performance, and wettability were measured. The results show that three kinds of Gemini surfactants GS-1, GS-2, GS-3 are successfully prepared, and their Krafft temperatures are all less than 0℃, which provides a theoretical possibility for their use in low temperature environments with maintained high surface activity. Then, the critical micelle concentration (CMC) values of GS-1, GS-2, GS-3 are 7.7×10-5, 7.08×10-5, and 2.63×10-6 mol/L, respectively, which are consistent with the expected results. The CMC value of the Gemini surfactant is 1~2 orders of magnitude lower than that of the conventional surfactant single alkyl chain. In addition, the synthesized surfactants all show good surface a ctivity, emulsifying properties, and the ability to stabilize foam.
  • 加载中
    1. [1]

      TAWFIK S M. Synthesis, surface, biological activity and mixed micellar phase properties of some biodegradable gemini cationic surfactants containing oxycarbonyl groups in the lipophilic part[J]. J Ind Eng Chem, 2015,28:171-183. doi: 10.1016/j.jiec.2015.02.011

    2. [2]

      WANG Y K, JIANG Y J, GENG T. Synthesis, surface/interfacial properties, and biological activity of amide-based gemini cationic surfactants with hydroxyl in the spacer group[J]. Colloids Surf A, 2019,563:1-10. doi: 10.1016/j.colsurfa.2018.11.061

    3. [3]

      MENGER F M, KEIPER J S, AZOV V. Gemini surfactants with acetylenic spacers[J]. Langmuir, 2000,16(5):2062-2067. doi: 10.1021/la9910576

    4. [4]

      SHARMA R, KAMAL A, ABDINEJAD M. Advances in the synthesis, molecular architectures and potential applications of gemini surfactants[J]. Adv Colloid Interface Sci, 2017,248:35-68. doi: 10.1016/j.cis.2017.07.032

    5. [5]

      HASANOV E E, RAHIMOV R A, ABDULLAYEV Y. New class of cocogem surfactants based on hexamethylenediamine, propylene oxide, and long chain carboxylic acids: theory and application[J]. J Ind Eng Chem, 2020,86:123-135. doi: 10.1016/j.jiec.2020.02.019

    6. [6]

      ANDREOZZI P, PONS R, PÉREZ L. Gemini surfactant binding onto hydrophobically modified silica nanoparticles[J]. J Phys Chem C, 2008,112(32):12142-12148. doi: 10.1021/jp8026989

    7. [7]

      YOUSEFI A, JAVADIAN S, NESHATI J. A new approach to study the synergistic inhibition effect of cationic and anionic surfactants on the corrosion of mild steel in HCl solution[J]. Ind Eng Chem Res, 2014,53(13):5475-5489. doi: 10.1021/ie402547m

    8. [8]

      FENG L W, YIN C J, ZHANG H L. Cationic Gemini surfactants with a bipyridyl spacer as corrosion inhibitors for carbon steel[J]. ACS Omega, 2018,3(12):18990-18999. doi: 10.1021/acsomega.8b03043

    9. [9]

      LUO X H, ZHONG J W, ZHOU Q L. Cationic reduced graphene oxide as self-aligned nanofiller in the epoxy nanocomposite coating with excellent anticorrosive performance and its high antibacterial activity[J]. ACS Appl Mater Interfaces, 2018,10(21):18400-18415. doi: 10.1021/acsami.8b01982

    10. [10]

      GUO N N, ZHENG M Y, WANG T R. Application of quaternary ammonium gemini surfactant in leather industry[J]. Leather Chem, 2019,36(4):24-29.

    11. [11]

      LV Q C, LI Z M, LI B F. Study of nanoparticle surfactant-stabilized foam as a fracturing fluid[J]. Ind Eng Chem Res, 2015,54(38):9468-9477. doi: 10.1021/acs.iecr.5b02197

    12. [12]

      LI K X, JING X Q, HE S. Static adsorption and retention of viscoelastic surfactant in porous media: EOR implication[J]. Energy Fuels, 2016,30(11):9089-9096. doi: 10.1021/acs.energyfuels.6b01732

    13. [13]

      FU L P, LIAO K L, GE J J. Synergistic effect of sodium p-perfluorononenyloxybenzenesulfonate and alkanolamide compounding system used as cleanup additive in hydraulic fracturing[J]. Energy Fuels, 2020,34(6):7029-7037. doi: 10.1021/acs.energyfuels.0c01043

    14. [14]

      LIU X M, SONG C, WANG S Y. Synthesis and properties of cationic Gemini surfactants with amide group[J]. Chem Res Appl, 2011,23(2):184-188.

    15. [15]

      SUN Y, PAN Ha, HAN F. Synthesis and properties of quaternary ammonium gemini surfactants with hydroxyl in head groups[J]. China Surfactant Deterg Cosmet, 2019,49(3):135-140.

    16. [16]

      WU Z F, LI Y L, LI J. Study on the properties and self-assembly of fatty alcohol ether carboxylic ester anionic surfactant and cationic surfactant in a mixed system[J]. New J Chem, 2019,43(31):12494-12502. doi: 10.1039/C9NJ02407G

    17. [17]

      GUO H, ZHUANG Y W, PANG H Y. Studies on the reaction mechanism of cationic quaternary ammonium gemini serfactant by IR spectroscopy[J]. Spectrosc Spectr Anal, 2018,38(10):3-4.

    18. [18]

      DAVEY T M, DUCKER W A, HAYMAN A R. Krafft temperature depression in quaternary ammonium bromide surfactants[J]. Langmuir, 1998,14(12):3210-3213. doi: 10.1021/la9711894

    19. [19]

      HOQUE J, AKKAPEDDI P, YARLAGADDA V. Cleavable cationic antibacterial amphiphiles: synthesis, mechanism of action, and cytotoxicities[J]. Langmuir, 2012,28(33):12225-12234. doi: 10.1021/la302303d

    20. [20]

      PEI X M, YOU Y, ZHAO J X. Adsorption and aggregation of 2-hydroxyl-propanediyl-α, ω-bis(dimethyldodecyl ammonium bromide) in aqueous solution: effect of intermolecular hydrogen-bonding[J]. J Colloid Interface Sci, 2010,351(2):457-265. doi: 10.1016/j.jcis.2010.07.076

    21. [21]

      LIU X M, LIAO X, ZHANG S H. Physicochemical properties of noncovalently constructed sugar-based pseudogemini surfactants: evaluation of linker length influence[J]. J Chem Eng Data, 2019,64(1):60-68. doi: 10.1021/acs.jced.8b00459

    22. [22]

      ROSEN M J, KUNJAPPU J T. Surfactants and interfacial phenomena[M]. CUI Z G, JIANG J Z, et al. Trans. 5th Ed. Trans. Beijing: Chemical Industry Press, 2014: 44-45.

    23. [23]

      XU D Q, NI X Y, ZHANG C Y. Synthesis a nd properties of biodegradable cationic gemini surfactants with diester and flexible spacers[J]. J Mol Liq, 2017,240:542-548. doi: 10.1016/j.molliq.2017.05.092

    24. [24]

      ABO-RIYA M, TANTAWY A H, EL-DOUGDOUG W. Synthesis and evaluation of novel cationic gemini surfactants based on guava crude fat as petroleum-collecting and dispersing agents[J]. J Mol Liq, 2016,221:642-650. doi: 10.1016/j.molliq.2016.05.083

    25. [25]

      WANG G Y, QU W S, DU Z P. Adsorption and aggregation behavior of tetrasiloxane-tailed surfactants containing oligo(ethylene oxide) methyl ether and a sugar moiety[J]. J Phys Chem B, 2011,115(14):3811-3818. doi: 10.1021/jp110578u

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    4. [4]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    7. [7]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    10. [10]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    15. [15]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    16. [16]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    17. [17]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(34)
  • Abstract views(2914)
  • HTML views(620)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return