Citation: Li-Juan HAO, Ting WANG, Guo-Hua DONG, Wen-Zhi ZHANG, Li-Ming BAI, Hai-Yao DU, Kun LANG, Xin LI. Preparation of Green Carbon Quantum Dots from Corn Starch and Hydrogen Ion/Hydroxyl Ion Regulated Fluorescent Switch Performance[J]. Chinese Journal of Applied Chemistry, ;2021, 38(2): 202-211. doi: 10.19894/j.issn.1000-0518.200223 shu

Preparation of Green Carbon Quantum Dots from Corn Starch and Hydrogen Ion/Hydroxyl Ion Regulated Fluorescent Switch Performance

  • Corresponding author: Guo-Hua DONG, ghdong@qqhru.edu.cn Wen-Zhi ZHANG, zhangwenzhi@qqhru.edu.cn
  • Received Date: 27 July 2020
    Accepted Date: 12 November 2020

    Fund Project: the National Natural Science Foundation of China 21776144the Research Foundation of Education Bureau of Heilongjiang Province of China 135509505the Special Project of Advantage Characteristic Discipline of Heilongjiang Province YSTSXK201841the College Students′ Innovative Entrepreneurial Training Plan Program of Qiqihar University 202010232046the Innovation Project of Graduate Education of Qiqihar University YJSCX2020028the Innovation Project of Graduate Education of Qiqihar University YJSCX2019034

Figures(7)

  • Green fluorescent carbon quantum dots (G-CQDs) were synthesized from corn starch and oxalic acid via an ethanol solvothermal method. The morphology, composition and structure of G-CQDs were analyzed using transmission electron microscopy (TEM), Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The results show that G-CQDs are quasi-spherical nanoparticles with the particle size of about 2~5 nm and have graphene-like structure with abundant water-soluble groups such as C-O and O-H on the surface. The fluorescence measurement assay results exhibit that the synthesized G-CQDs display strong fluorescence emission at~520 nm with the excitation wavelength of 385 nm, and the emission intensity increases first and then decreases with the decrease of the concentration of G-CQDs. The fluorescence quantum yield of the synthesized G-CQDs can reach up to 38.5%. Moreover, the fluorescence emission of G-CQDs exhibits various decay behaviors with the varied concentration of H+ and OH-. Therefore, the synthesized G-CQDs can be utilized as the reversible "off-on" switch probe for the detection of H+ and OH-.
  • 加载中
    1. [1]

      JIANG Q W, JING Y, NI Y Y. Potentiality of carbon quantum dots derived from chitin as a fluorescent sensor for cetection of ClO-[J]. Microchem J, 2020,157(9)105111.  

    2. [2]

      QI H J, TENG M, LIU M. Biomass-derived nitrogen-doped carbon quantum qots: highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines[J]. J Colloid Sci, 2019,539(3):332-341.  

    3. [3]

      GAO X H, DU C, ZHUANG Z H. Carbon quantum dots-based nanoprobes for metal ions detection[J]. J Mater Chem C, 2016,4(29):6927-6945. doi: 10.1039/C6TC02055K

    4. [4]

      LI L L, WU G H, YANG G H. Focusing on luminescent graphene quantum dots: current status and future perspectives[J]. Nanoscale, 2013,5(10):4015-4039. doi: 10.1039/c3nr33849e

    5. [5]

      SHEN J H, ZHU Y H, YANG X L. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices[J]. Chem Commun (Camb), 2012,48(31):3686-3699. doi: 10.1039/c2cc00110a

    6. [6]

      ZHANG Z P, ZHANG J, CHEN N. Graphene quantum dots: an emerging material for energy-related applications and beyond[J]. Energy Environ Sci, 2012,5(10)8869. doi: 10.1039/c2ee22982j

    7. [7]

      FU P, ZHOU L H, TANG L F. Progress in preparation of carbon quantum dots and its application in the fields of energy and environment[J]. Chinese J Appl Chem, 2016,33(7):742-755.  

    8. [8]

      CHEN Y H, ZHENG M T, XIAO Y. A self-quenching-resistant carbon-dot powder with tunable solid-state fluorescence and construction of dual-fluorescence morphologies for white light-emission[J]. Adv Mater, 2016,28(2):312-318. doi: 10.1002/adma.201503380

    9. [9]

      TU Z Q, HU E Z, WANG B B. Tribological behaviors of Ni-modified citric acid carbon quantum dot particles as a green additive in polyethylene glycol[J]. J Friction, 2019,8(1):182-197. doi: 10.1007/s40544-019-0272-8

    10. [10]

      PU Z F, WEN Q L, YANG Y J. Fluorescent carbon quantum dots synthesized using phenylalanine and citric acid for selective detection of Fe3+ ions[J]. Spectrochim Acta Part A, 2020,229(3)117944.  

    11. [11]

      JIA J B, SUN Y, ZHANG Y J. Facile and efficient fabrication of bandgap tunable carbon quantum dots derived from anthracite and their photoluminescence properties[J]. Front Chem, 2020,8(2)123.  

    12. [12]

      WANG Y, WU W T, WU M B. Yellow-visual fluorescent carbon quantum dots from petroleum coke for the efficient detection of Cu2+ ions[J]. New Res Carbon Mater, 2015,30(6):550-559. doi: 10.1016/S1872-5805(15)60204-9

    13. [13]

      DING H, ZHOU X X, WEI J S. Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications[J]. Carbon, 2020,167(10):322-344.  

    14. [14]

      MOHEBBI A, FARAJZADEH M A, MAHMOUDZADEH A. Combination of poly (ε-caprolactone) grafted graphene quantum dots-based dispersive solid phase extraction followed by dispersive liquid-liquid microextraction for extraction of some pesticides from fruit juices prior to their quantification by gas chromatography[J]. Microchem J, 2020,153(3)104328.

    15. [15]

      LU M C, DUAN Y X, SONG Y H. Green preparation of versatile nitrogen-doped carbon quantum dots from watermelon juice for cell imaging, detection of Fe3+ ions and cysteine, and optical thermometry[J]. J Mol Liq, 2018,269(11):766-774.  

    16. [16]

      XIAO P, KE Y, LU J. Photoluminescence immunoassay based on grapefruit peel-extracted carbon quantum dots encapsulated into silica nanospheres for p53 protein[J]. Biochem Eng J, 2018,139(11):109-116.  

    17. [17]

      ARUMUGHAM T, ALAGUMUTHU M, AMIMODU R G. A sustainable synthesis of green carbon quantum dot (CQD) from catharanthus roseus (white flowering plant) leaves and investigation of its dual fluorescence responsive behavior in multi-ion detection and biological applications[J]. Sustainable Mater Technol, 2020,23(4)138.

    18. [18]

      ZHAO J, WANG Y N, DONG W W. A robust luminescent Tb(Ⅲ)-MOF with lewis basic pyridyl sites for the highly sensitive detection of metal ions and small molecules[J]. Inorg Chem, 2016,55(7):3265-3271. doi: 10.1021/acs.inorgchem.5b02294

    19. [19]

      ZHANG Y, FU Y Y, ZHU D F. Recent advances in fluorescence sensor for the detection of peroxide explosives[J]. Chinese Chem Lett, 2016,27(8):1429-1436. doi: 10.1016/j.cclet.2016.05.019

    20. [20]

      SHEHAB M, EBRAHIM S, Soliman M. Graphene quantum dots prepared from glucose as optical sensor for glucose[J]. J Lumin, 2017,184(12):110-116.  

    21. [21]

      WENG C I, CHANG H T, LIN C H. One-step synthesis of biofunctional carbon quantum dots for bacterial labeling[J]. Biosens Bioelectron, 2015,68(6):1-6.  

    22. [22]

      SHI Y X, LIU X, WANG M. Synthesis of N-doped carbon quantum dots from bio-waste lignin for selective irons detection and cellular imaging[J]. Int J Biol Macromol, 2019,128(5):537-545.  

    23. [23]

      MINTZ K J, ZHOU Y, LEBLANC R M. Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure[J]. Nanoscale, 2019,11(11):4634-4652. doi: 10.1039/C8NR10059D

    24. [24]

      SHAIKH A F, TAMBOLI M S, PATIL R H. Bioinspired carbon quantum dots: an antibiofilm agents[J]. J Nanosci Nanotechnol, 2019,19(4):2339-2345. doi: 10.1166/jnn.2019.16537

    25. [25]

      WU F S, SU H F, ZHU X J. Near-infrared emissive lanthanide hybridized carbon quantum dots for bioimaging applications[J]. J Mater Chem B, 2016,4(38):6366-6372. doi: 10.1039/C6TB01646D

    26. [26]

      WU F S, SU H F, WANG K. Facile synthesis of N-rich carbon quantum dots from porphyrins as efficient probes for bioimaging and biosensing in living cells[J]. Int J Nanomed, 2017,12(10):7375-7391.  

    27. [27]

      HUANG G B, LUO D F, ZHANG M S. Preparation of CsPbX3(X=Cl, Br, I) perovskite quantum dots with multicolor and high luminescence efficiency and its application in light emitting diode devices[J]. Chinese J Appl Chem, 2019,36(8):932-938.  

    28. [28]

      YUAN F L, WANG Z B, LI X H. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes[J]. J Adv Mater, 2017,29(3):1604436.1-1604436.6.  

    29. [29]

      YU J, XU C X, TIAN Z S. Facilely synthesized N-doped carbon quantum dots with high fluorescent yield for sensing Fe3+[J]. New J Chem, 2016,40(3):2083-2088. doi: 10.1039/C5NJ03252K

    30. [30]

      BHARATHI D, SIDDLINGESHWAR B, KRISHNA R H. Green and cost effective synthesis of fluorescent carbon quantum dots for dopamine detection[J]. J Fluoresc, 2018,28(2):573-579. doi: 10.1007/s10895-018-2218-3

    31. [31]

      LIU Y L, ZHOU Q X. Sensitive pH probe developed with water-soluble fluorescent carbon dots from chocolate by one-step hydrothermal method[J]. Int J Environ Anal Chem, 2017,97(12):1119-1131. doi: 10.1080/03067319.2017.1385782

    32. [32]

      MA H Y, WANG J Y, ZHANG Y C. Determination of dopamine using peanut carbon quantum dots as probe based on fluorescence quenching recovery[J]. Spectrosc Spectr Anal, 2020,40(4):1093-1098.  

    33. [33]

      SHEN J, SHANG S M, CHEN X Y. Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging[J]. Mater Sci Eng C, 2017,76(7):856-864.

    34. [34]

      DU J L, WANG H Y, WANG L. Insight into the effect of functional groups on visible fluorescence emissions of graphene quantum dots[J]. J Mater Chem C, 2016,4(11):2235-2242. doi: 10.1039/C6TC00548A

    35. [35]

      LIN L X, ZHANG S W. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes[J]. Chem Commun, 2012,48(82):10177-10179. doi: 10.1039/c2cc35559k

    36. [36]

      LUCAS B N, JORGE H A, MARIO V V. NADH oxidation onto different carbon-based sensors: effect of structure and surface-oxygenated groups[J]. J Sens, 2018,2018(3):1-9.  

    37. [37]

      WANG R, LU K Q, TANG Z R. Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis[J]. J Mater Chem A, 2017,5(8):3717-3734. doi: 10.1039/C6TA08660H

    38. [38]

      ZHAO H L, QIU F, JIN S B. High work-hardening effect of the pure NiAl intermetallic compound fabricated by the combustion synthesis and hot pressing technique[J]. Mater Lett, 2011,65(17/18):2604-2606.  

    39. [39]

      LI C L, ZHANG X X, ZHANG W J. Carbon quantum dots derived from pure solvent tetrahydrofuran as a fluorescent probe to detect pH and silver ion[J]. J Photochem Photobiol A, 2019,382(9)111981.  

    40. [40]

      HUANG J X, HE Y L, ZHANG Z B. Synthesis of high-efficient red carbon dots for pH detection[J]. J Lumin, 2019,215(11)116640.  

    41. [41]

      ZONG J, YANG X L, TRINCHI A. Carbon dots as fluorescent probes for "off-on" detection of Cu2+ and L-cysteine in aqueous solution[J]. Biosens Bioelectron, 2014,51(1):330-335.  

  • 加载中
    1. [1]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    6. [6]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    7. [7]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    8. [8]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    14. [14]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    15. [15]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    20. [20]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

Metrics
  • PDF Downloads(38)
  • Abstract views(2957)
  • HTML views(552)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return