Citation: Feng XU, Kun ZHANG, Feng-Qin YIN, Fei XU, Yu-Xuan PANG, Shi-Ting CHEN. Research Progress in Preparation and Application of Anion Imprinted Polymers[J]. Chinese Journal of Applied Chemistry, ;2021, 38(2): 123-135. doi: 10.19894/j.issn.1000-0518.200220 shu

Research Progress in Preparation and Application of Anion Imprinted Polymers

  • Corresponding author: Feng-Qin YIN, fqyin1104@163.com
  • Received Date: 24 July 2020
    Accepted Date: 12 November 2020

    Fund Project: the National Natural Science Foundation of China 31671934the National Key Research and Development Program of the 13th Five Year 2017YFC1600603

Figures(5)

  • Ion imprinted polymer is a special kind of polymer with the ability to selectively adsorb the target ion and is prepared by the imprinting technique with imprinting the template ion. The present reports are mostly about the preparation and performance of cation imprinted polymers, but the development of anion imprinted polymers is relatively backward. The reason comes from the more complex structure of anion templates and its smaller ratio of the charge to size, which makes it very difficult to establish a clear recognition site in anion imprinted polymers. In order to guide the preparation and applications of anion imprinted polymers more effectively, the recent status is reviewed. The types of functional monomers (including amino, quaternary ammonium, nitrogen heterocyclic and carboxyl structures) that can adsorb and bind to various common anions are summarized. And the adsorption properties of anion imprinted polymers based on the above monomers are reviewed. Then the preparation methods and synthetic strategies of anion imprinted polymers and their applications in analytical chemistry containing anion electrochemical detection and fluorescence sensing are introduced. Finally, there are still some deficiencies such as unsatisfactory adsorption capacity and rare industrial applications. The future research directions about anion imprinted polymers are also discussed and prospected.
  • 加载中
    1. [1]

      LU J, QIN Y, WU Y. Recent advances in ion-imprinted membranes: separation and detection via ion-selective recognition[J]. Environ Sci Water Res Technol, 2019,5(10):1626-1653. doi: 10.1039/C9EW00465C

    2. [2]

      BELBRUNO J J. Molecularly imprinted polymers[J]. Chem Rev, 2019,119(1):94-119. doi: 10.1021/acs.chemrev.8b00171

    3. [3]

      WULFF G, SARHAN A A. The use of polymers with enzyme-analogous structures for the resolution of racemates[J]. Angew Chem Int Ed, 1972,11:341-346.  

    4. [4]

      TAKAGISHI T, KLOTZ I M J B. Macromolecule-small molecule interactions; introduction of additional binding sites in polyethyleneimine by disulfide cross-linkages[J]. Biopolymers, 1972,11(2):483-491. doi: 10.1002/bip.1972.360110213

    5. [5]

      HUANG Y, WANG R. Review on fundamentals, preparations and applications of imprinted polymers[J]. Curr Org Chem, 2018,22(16):1600-1618. doi: 10.2174/1385272822666180711120045

    6. [6]

      MALIK M I, SHAIKH H, MUSTAFA G. Recent applications of molecularly imprinted polymers in analytical chemistry[J]. Sep Purif Rev, 2018,48(3):179-219.

    7. [7]

      PINHEIRO S C, DESCALZO A B, RAIMUNDO I M. Fluorescent ion-imprinted polymers for selective Cu(Ⅱ) optosensing[J]. Anal Bioanal Chem, 2012,402(10):3253-3260. doi: 10.1007/s00216-011-5620-0

    8. [8]

      HANDE P E, SAMUI A B, KULKARNI P S. Highly selective monitoring of metals by using ion-imprinted polymers[J]. Environ Sci Pollut Res, 2015,22(10):7375-7404. doi: 10.1007/s11356-014-3937-x

    9. [9]

      SHAKERIAN F, KIM K-H, KWON E. Advanced polymeric materials: synthesis and analytical application of ion imprinted polymers as selective sorbents for solid phase extraction of metal ions[J]. Trends Anal Chem, 2016,83:55-69. doi: 10.1016/j.trac.2016.08.001

    10. [10]

      LV X, LIU Y, ZHANG J. Study on the adsorption behavior of glutaric acid modified Pb(Ⅱ) imprinted chitosan-based composite membrane to Pb(Ⅱ) in aqueous solution[J]. Mater Lett, 2019,251(SEP.15):172-175.  

    11. [11]

      ZHOU Z, KONG D, ZHU H. Preparation and adsorption characteristics of an ion-imprinted polymer for fast removal of Ni(Ⅱ) ions from aqueous solution[J]. J Hazard Mater, 2018,341:355-364. doi: 10.1016/j.jhazmat.2017.06.010

    12. [12]

      YUAN G, TU H, LIU J. A novel ion-imprinted polymer induced by the glycylglycine modified metal-organic framework for the selective removal of Co(Ⅱ) from aqueous solutions[J]. Chem Eng J, 2018,333:280-288. doi: 10.1016/j.cej.2017.09.123

    13. [13]

      ZHENG X, ZHANG Y, ZHANG F. Dual-template docking oriented ionic imprinted bilayer mesoporous films with efficient recovery of neodymium and dysprosium[J]. J Hazard Mater, 2018,353:496-504. doi: 10.1016/j.jhazmat.2018.04.022

    14. [14]

      LU J, WU Y, LIN X. Anti-fouling and thermosensitive ion-imprinted nanocomposite membranes based on grapheme oxide and silicon dioxide for selectively separating europium ions[J]. J Hazard Mater, 2018,353:244-253. doi: 10.1016/j.jhazmat.2018.04.014

    15. [15]

      YANG P, CAO H, XU F. Preparation and application of core-shell ion imprinted polymer[J]. Ind Microbiol, 2019,49(5):17-23.  

    16. [16]

      YANG P, CAO H, MAI D. A novel morphological ion imprinted polymers for selective solid phase extraction of Cd(Ⅱ): preparation, adsorption properties and binding mechanism to Cd(Ⅱ)[J]. React Funct Polym, 2020,151:104569-104578. doi: 10.1016/j.reactfunctpolym.2020.104569

    17. [17]

      FU J, CHEN L, LI J. Current status and challenges of ion imprinting[J]. J Mater Chem A, 2015,3(26):13598-13627. doi: 10.1039/C5TA02421H

    18. [18]

      PERERA R, ASHRAF S, MUELLER A. The binding of metal ions to molecularly-imprinted polymers[J]. Water Sci Technol, 2017,75(7/8):1643-1650.  

    19. [19]

      WU X. Molecular imprinting for anion recognition in aqueous media[J]. Microchim Acta, 2011,176(1/2):23-47.  

    20. [20]

      VILAR R N, BALLESTER P. Recognition of anions[J]. Springer Berlin, 2008,129:175-200.  

    21. [21]

      SPELTINI A, SCALABRINI A, MARASCHI F. Newest applications of molecularly imprinted polymers for extraction of contaminants from environmental and food matrices: a review[J]. Anal Chim Acta, 2017,974:1-26. doi: 10.1016/j.aca.2017.04.042

    22. [22]

      JINADASA K K, PEÑA-VÁZQUEZ E, BERMEJO-BARRERA P. New adsorbents based on imprinted polymers and composite nanomaterials for arsenic and mercury screening/speciation: a review[J]. Microchem J, 2020,156:104886-104894. doi: 10.1016/j.microc.2020.104886

    23. [23]

      CHEN L, WANG X, LU W. Molecular imprinting: perspectives and applications[J]. Chem Soc Rev, 2016,45(8):2137-2211. doi: 10.1039/C6CS00061D

    24. [24]

      YU J S, XU F, CAO H. Screening of functional monomers of cadmium ion imprinted polymer by conductivity method[J]. Ind Microbiol, 2020,50(3):43-48.  

    25. [25]

      LANGTON M J, SERPELL C J, BEER P D. Anion recognition in water: recent advances from a supramolecular and macromolecular perspective[J]. Angew Chem Int Ed, 2016,55(6):1974-1987. doi: 10.1002/anie.201506589

    26. [26]

      KONG D, ZHANG F, WANG K. Fast removal of Cr(Ⅵ) from aqueous solution using Cr(Ⅵ)-imprinted polymer particles[J]. Ind Eng Chem Res, 2014,53(11):4434-4441. doi: 10.1021/ie403484p

    27. [27]

      LOU Z, HUANG M, CUI J. Copolymers of vinylimidazolium-based ionic liquids and divinylbenzene for adsorption of TcO4- or ReO4-[J]. Hydrometallurgy, 2019,190:105147-105155. doi: 10.1016/j.hydromet.2019.105147

    28. [28]

      KHAN F, ARATSU F, KOBAYASHI S. A simple strategy for robust preparation and characterisation of hydrogels derived from chitosan and amino functional monomers for biomedical applications[J]. J Mater Chem B, 2018,6(31):5115-5129. doi: 10.1039/C8TB00865E

    29. [29]

      VELEMPINI T, PILLAY K, MBIANDA X Y. Epichlorohydrin crosslinked carboxymethyl cellulose-ethylenediamine imprinted polymer for the selective uptake of Cr(Ⅵ)[J]. Int J Biol Macromol, 2017,101:837-844. doi: 10.1016/j.ijbiomac.2017.03.048

    30. [30]

      SHEN H, SUN M, HU M. Design and controllable synthesis of ethylenediamine-grafted ion imprinted magnetic polymers for highly selective adsorption to perchlorate[J]. RSC Adv, 2018,8(52):29928-29938. doi: 10.1039/C8RA06085A

    31. [31]

      BOYACI E, CAGIR A, SHAHWAN T. Synthesis, characterization and application of a novel mercapto- and amine-bifunctionalized silica for speciation/sorption of inorganic arsenic prior to inductively coupled plasma mass spectrometric determination[J]. Talanta, 2011,85(3):1517-1525. doi: 10.1016/j.talanta.2011.06.021

    32. [32]

      CHEN L, LIANG H, XING J. Synthesis of multidentate functional monomer for ion imprinting[J]. J Sep Sci, 2020,43(7):1356-1364. doi: 10.1002/jssc.201901063

    33. [33]

      FAN H T, SUN T, XU H B. Removal of arsenic(Ⅴ) from aqueous solutions using3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane functionalized silica gel adsorbent[J]. Desalination, 2011,278(1/2/3):238-243.  

    34. [34]

      XING D Y, CHEN Y, ZHU J. Fabrication of hydrolytically stable magnetic core-shell aminosilane nanocomposite for the adsorption of PFOS and PFOA[J]. Chemosphere, 2020,251:126384-126393. doi: 10.1016/j.chemosphere.2020.126384

    35. [35]

      JANIK P, ZAWISZA B, TALIK E. Selective adsorption and determination of hexavalent chromium ions using graphene oxide modified with amino silanes[J]. Microchim Acta, 2018,185(2)117. doi: 10.1007/s00604-017-2640-2

    36. [36]

      SOTO R J, YANG L, SCHOENFISCH M H. Functionalized mesoporous silica via an aminosilane surfactant ion exchange reaction: controlled scaffold design and nitric oxide release[J]. ACS Appl Mater Interfaces, 2016,8(3):2220-2231. doi: 10.1021/acsami.5b10942

    37. [37]

      HUANG R, MA X, LI X. A novel ion-imprinted polymer based on graphene oxide-mesoporous silica nanosheet for fast and efficient removal of chromium (Ⅵ) from aqueous solution[J]. J Colloid Interface Sci, 2018,514:544-553. doi: 10.1016/j.jcis.2017.12.065

    38. [38]

      FAN H T, FAN X, LI J. Selective removal of arsenic(Ⅴ) from aqueous solution using a surface-ion-imprinted amine-functionalized silica gel sorbent[J]. Ind Eng Chem Res, 2012,51(14):5216-5223. doi: 10.1021/ie202655x

    39. [39]

      HELLING S, SHINDE S, BROSSERON F. Ultratrace enrichment of tyrosine phosphorylated peptides on an imprinted polymer[J]. Anal Chem, 2011,83(5):1862-1865. doi: 10.1021/ac103086v

    40. [40]

      BLAŽEK BREGOVIC' V, BASARIC' N, MLINARIC'-MAJERSKI K. Anion binding with urea and thiourea derivatives[J]. Coord Chem Rev, 2015,295:80-124. doi: 10.1016/j.ccr.2015.03.011

    41. [41]

      CHEN Y, LI D, BIE Z. Coupling of phosphate-imprinted mesoporous silica nanoparticles-based selective enrichment with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for highly efficient analysis of protein phosphorylation[J]. Anal Chem, 2016,88(2):1447-1454. doi: 10.1021/acs.analchem.5b04343

    42. [42]

      KUGIMIYA A, TAKEI H. Selectivity and recovery performance of phosphate-selective molecularly imprinted polymer[J]. Anal Chim Acta, 2008,606(2):252-256. doi: 10.1016/j.aca.2007.11.025

    43. [43]

      ABU SAMAH N, MAT ROSLI N A, ABDUL MANAP A H. Synthesis & characterization of ion imprinted polymer for arsenic removal from water: a value addition to the groundwater resources[J]. Chem Eng J, 2020,394:124900-124907. doi: 10.1016/j.cej.2020.124900

    44. [44]

      SHINDE S, INCEL A, MANSOUR M. Urea-based imprinted polymer hosts with switchable anion preference[J]. J Am Chem Soc, 2020,142(26):11404-11416. doi: 10.1021/jacs.0c00707

    45. [45]

      SHINDE S, MANSOUR M, INCEL A. High salt compatible oxyanion receptors by dual ion imprinting[J]. Chem Sci, 2020,11(16):4246-4250. doi: 10.1039/C9SC06508C

    46. [46]

      GAO B, CHA X, CHEN T. Designing and Preparing of acid dye surface-imprinted material for effective removal of acid dyes from water[J]. J Environ Chem Eng, 2015,3(1):277-285. doi: 10.1016/j.jece.2014.10.017

    47. [47]

      URBANO B F, VILLENAS I, RIVAS B L. Cationic polymer-TiO2 nanocomposite sorbent for arsenate removal[J]. Chem Eng J, 2015,268:362-370. doi: 10.1016/j.cej.2015.01.068

    48. [48]

      NAJIB N, CHRISTODOULATOS C. Removal of arsenic using functionalized cellulose nanofibrils from aqueous solutions[J]. J Hazard Mater, 2019,367:256-266. doi: 10.1016/j.jhazmat.2018.12.067

    49. [49]

      GOGOI H, LEIVISKA T, RAMO J. Production of aminated peat from branched polyethylenimine and glycidyltrimethylammonium chloride for sulphate removal from mining water[J]. Environ Res, 2019,175:323-334. doi: 10.1016/j.envres.2019.05.022

    50. [50]

      HOSHINO Y, JIBIKI T, NAKAMOTO M. Reversible pKa modulation of carboxylic acids in temperature-responsive nanoparticles through imprinted electrostatic interactions[J]. ACS Appl Mater Interfaces, 2018,10(37):31096-31105. doi: 10.1021/acsami.8b11397

    51. [51]

      SHU X, SHEN L, WEI Y. Synthesis of surface ion-imprinted magnetic microsphere for efficient sorption of perrhenate: a structural surrogate for pertechnetate[J]. J Mol Liq, 2015,211:621-627. doi: 10.1016/j.molliq.2015.07.059

    52. [52]

      XI Y, HUANG M, LUO X. Enhanced phosphate adsorption performance by innovative anion imprinted polymers with dual interaction[J]. Appl Surf Sci, 2019,467/468:135-142. doi: 10.1016/j.apsusc.2018.10.095

    53. [53]

      GUO H, LIU Y, MA W. Surface molecular imprinting on carbon microspheres for fast and selective adsorption of perfluorooctane sulfonate[J]. J Hazard Mater, 2018,348:29-38. doi: 10.1016/j.jhazmat.2018.01.018

    54. [54]

      REN Z, KONG D, WANG K. Preparation and adsorption characteristics of an imprinted polymer for selective removal of Cr(Ⅵ) Ions from aqueous solutions[J]. J Mater Chem A, 2014,2(42):17952-17961. doi: 10.1039/C4TA03024A

    55. [55]

      TAGHIZADEH M, HASSANPOUR S. Selective adsorption of Cr(Ⅵ) ions from aqueous solutions using a Cr(Ⅵ)-imprinted polymer supported by magnetic multiwall carbon nanotubes[J]. Polymer, 2017,132:1-11. doi: 10.1016/j.polymer.2017.10.045

    56. [56]

      JINADASA K K, PENA-VAZQUEZ E, BERMEJO-BARRERA P. Ionic Imprinted polymer solid-phase extraction for inorganic arsenic selective pre-concentration in fishery products before high-performance liquid chromatography-inductively coupled plasma-mass spectrometry speciation[J]. J Chromatogr A, 2020,1619:460973-460982. doi: 10.1016/j.chroma.2020.460973

    57. [57]

      DONG Z, YUAN W, LI Y. Radiation synthesis of crown ether functionalized microcrystalline cellulose as bifunctional adsorbent: a preliminary investigation on its application for removal of ReO4- as analogue for TcO4-[J]. Radiat Phys Chem, 2019,159:147-153. doi: 10.1016/j.radphyschem.2019.02.054

    58. [58]

      FANG L, MIN X, KANG R. Development of an anion imprinted polymer for high and selective removal of arsenite from wastewater[J]. Sci Total Environ, 2018,639:110-117. doi: 10.1016/j.scitotenv.2018.05.103

    59. [59]

      KANG R F. Synthesis of ion imprinted polymers and their selective removal of cobalt and arsenite ions in water[D]. Nanchang: Nanchang Hangkong University, 2016.

    60. [60]

      GOLKER K, OLSSON G D, NICHOLLS I A. The influence of a methyl substituent on molecularly imprinted polymer morphology and recognition-acrylic acid versus methacrylic acid[J]. Eur Polym J, 2017,92:137-149. doi: 10.1016/j.eurpolymj.2017.04.043

    61. [61]

      MUSTAFAI, BALOUCH, ABDULLAH. Microwave-assisted synthesis of imprinted polymer for selective removal of arsenic from drinking water by applying taguchi statistical method[J]. Eur Polym J, 2018,109:133-142. doi: 10.1016/j.eurpolymj.2018.09.041

    62. [62]

      ALIZADEH T, RASHEDI M. Synthesis of nano-sized arsenic-imprinted polymer and its use as As3+ selective ionophore in a potentiometric membrane electrode: part 1[J]. Anal Chim Acta, 2014,843:7-17. doi: 10.1016/j.aca.2014.06.052

    63. [63]

      ALIZADEH T, ATAYI K. Synthesis of hydrogen phosphate anion-imprinted polymer via emulsion polymerization and its use as the recognition element of graphene/graphite paste potentiometric electrode[J]. Mater Chem Phys, 2018,209:180-187. doi: 10.1016/j.matchemphys.2018.01.068

    64. [64]

      LI G, ROW K H. Recent applications of molecularly imprinted polymers (MIPs) on micro-extraction techniques[J]. Sep Purif Rev, 2017,47(1):1-18.  

    65. [65]

      KOTROTSIOU O, KIPARISSIDES C. Water treatment by molecularly imprinted materials[M]. Nanoscale Materials in Water Purification. 2019: 179-230.

    66. [66]

      ZHU G, GAO X, WANG X. Influence of hydrogen bond accepting ability of anions on the adsorption performance of ionic liquid surface molecularly imprinted polymers[J]. J Chromatogr A, 2018,1532:40-49. doi: 10.1016/j.chroma.2017.11.057

    67. [67]

      HASSANPOUR S, TAGHIZADEH M, YAMINI Y. Magnetic Cr(Ⅵ) ion imprinted polymer for the fast selective adsorption of Cr(Ⅵ) from aqueous solution[J]. J Polym Environ, 2017,26(1):101-115.  

    68. [68]

      DENG H, WEI Z, WANG X. Enhanced adsorption of active brilliant red X-3B dye on chitosan molecularly imprinted polymer functionalized with Ti(Ⅳ) as lewis acid[J]. Carbohydr Polym, 2017,157:1190-1197. doi: 10.1016/j.carbpol.2016.10.087

    69. [69]

      SINGH M, SINGH S, SINGH S P. Recent advancement of carbon nanomaterials engrained molecular imprinted polymer for environmental matrix[J]. Trends Environ Anal Chem, 2020,27e00092. doi: 10.1016/j.teac.2020.e00092

    70. [70]

      FU J Q, WANG X Y, LI J H. Heavy metal ion imprinting technology[J]. Prog Chem, 2016,28(1):91-98.  

    71. [71]

      RITT C L, CHISHOLM B J, BEZBARUAH A N. Assessment of molecularly imprinted polymers as phosphate sorbents[J]. Chemosphere, 2019,226:395-404. doi: 10.1016/j.chemosphere.2019.03.087

    72. [72]

      MAFU L D, MAMBA B B, MSAGATI T A M. Synthesis and characterization of ion imprinted polymeric adsorbents for the selective recognition and removal of arsenic and selenium in wastewater samples[J]. J Saudi Chem Soc, 2016,20(5):594-605. doi: 10.1016/j.jscs.2014.12.008

    73. [73]

      CAO F, WANG L, TIAN Y. Synthesis and evaluation of molecularly imprinted polymers with binary functional monomers for the selective removal of perfluorooctanesulfonic acid and perfluorooctanoic acid[J]. J Chromatogr A, 2017,1516:42-53. doi: 10.1016/j.chroma.2017.08.023

    74. [74]

      DADFARNIA S, HAJI SHABANI A M, DEHGHANPOOR FRASHAH S. Synthesis and application of a nanoporous ion-imprinted polymer for the separation and preconcentration of trace amounts of vanadium from food samples before determination by electrothermal atomic absorption spectrometry[J]. J Sep Sci, 2016,39(8):1509-1517. doi: 10.1002/jssc.201501301

    75. [75]

      BRANGER C, MEOUCHE W, MARGAILLAN A. Recent advances on ion-imprinted polymers[J]. React Funct Polym, 2013,73(6):859-875. doi: 10.1016/j.reactfunctpolym.2013.03.021

    76. [76]

      PARDESHI S, SINGH S K. Precipitation polymerization: a versatile tool for preparing molecularly imprinted polymer beads for chromatography applications[J]. RSC Adv, 2016,6(28):23525-23536. doi: 10.1039/C6RA02784A

    77. [77]

      TAO J F. Preparation, performance and application of platinum (Ⅳ) and rhodium (Ⅲ) Ion imprinted polymers[D]. Kunming: Yunnan University, 2012.

    78. [78]

      DAKOVA I, YORDNOVA T, KARADJOVA I, et al. Synthesis and characterization of As(Ⅴ)-imprinted smart polymer gel for selective adsorption of As(Ⅴ) ions[M]. International Conference on Quantum, Nonlinear, and Nanophotonics 2019(ICQNN 2019). 2019.

    79. [79]

      SUN Y, REN T, DENG Z. Molecularly imprinted polymers fabricated using janus particle-stabilized pickering emulsions and charged monomer polymerization[J]. New J Chem, 2018,42(9):7355-7363. doi: 10.1039/C8NJ00282G

    80. [80]

      LI S F. Preparation and characterization of surface ion imprinted polymers based on mesoporous materials[D]. Xining: Qinghai University, 2017.

    81. [81]

      QIU J, CHARLEUX B, MATYJASZEWSKI K. Controlled living radical polymerization in aqueous media homogeneous and heterogeneous systems[J]. Prog Polym Sci, 2001,26(10):2083-2134. doi: 10.1016/S0079-6700(01)00033-8

    82. [82]

      LIU B, ZHANG M, ZHOU C. Synthesis of monodisperse, large scale and high solid content latexes of poly(n-butyl acrylate) by a one-step batch emulsion polymerization[J]. Colloid Polym Sci, 2013,291(10):2385-2398. doi: 10.1007/s00396-013-2987-9

    83. [83]

      ZHU L Y, ZHU Z L, QIU Y L. Synthesis of As(Ⅴ)-Cr(Ⅲ) co-imprinted polymer and its adsorption performance for arsenate species[J]. Sep Sci Technol, 2014,49(10):1584-1591. doi: 10.1080/01496395.2014.893356

    84. [84]

      JALILIAN R, SHAHMARI M, TAHERI A. Ultrasonic-assisted micro solid phase extraction of arsenic on a new ion-imprinted polymer synthesized from chitosan-stabilized pickering emulsion in water, rice and vegetable samples[J]. Ultrason Sonochem, 2020,61:104802-104811. doi: 10.1016/j.ultsonch.2019.104802

    85. [85]

      WANG J L, LIU X Y, XIE M Y. Preparation of bulk ion imprinted materials[J]. Chem Prog, 2018,30(7):989-1012.  

    86. [86]

      XU R, YANG Q, LI Y B. Preparation of thiocyanate anion imprinted microspheres by reversed phase suspension polymerization and their ion recognition properties[J]. Chinese J Appl Chem, 2015,32(8):931-939.  

    87. [87]

      JIA W W, CHEN Z B. Research progress of ion imprinted polymers[J]. Appl Chem Ind, 2019,48(12):3003-3008, 3013.  

    88. [88]

      DU R, GAO B, MEN J. Characteristics and advantages of surface-initiated graft-polymerization as a way of "grafting from" method for graft-polymerization of functional monomers on solid particles[J]. Eur Polym J, 2020,127:109479-109488. doi: 10.1016/j.eurpolymj.2020.109479

    89. [89]

      ZHANG L, XU F, YUAN M. Research progress of preparation technology of surface ion imprinted polymer[J]. Appl Chem Ind, 2018,47(2):351-354, 364.  

    90. [90]

      FALLAH N, TAGHIZADEH M, HASSANPOUR S. Selective adsorption of Mo(Ⅵ) ions from aqueous solution using a surface-grafted Mo(Ⅵ) ion imprinted polymer[J]. Polymer, 2018,144:80-91. doi: 10.1016/j.polymer.2018.04.043

    91. [91]

      ROY E, PATRA S, MADHURI R. A single solution for arsenite and arsenate removal from drinking water using cysteine@ZnS: TiO2 nanoparticle modified molecularly imprinted biofouling-resistant filtration membrane[J]. Chem Eng J, 2016,304:259-270. doi: 10.1016/j.cej.2016.06.064

    92. [92]

      GAO B, LI D, LEI Q. Preparation of high PMMA grafted particle SiO2 using surface initiated free radical polymerization[J]. J Polym Res, 2011,18(6):1519-1526. doi: 10.1007/s10965-010-9557-3

    93. [93]

      SHI C, DING G S, TANG A N. Synthesis and evaluation of ion-imprinted sol-gel material of selenite[J]. Anal Methods, 2017,9(10):1658-1664. doi: 10.1039/C6AY03286A

    94. [94]

      HU M, SHEN H, YE S. Facile preparation of a tetraethylenepentamine-functionalized nano magnetic composite material and its adsorption mechanism to anions: competition or cooperation[J]. RSC Adv, 2018,8(19):10686-10697. doi: 10.1039/C8RA00237A

    95. [95]

      RUTKOWSKA M, PŁOTKA-WASYLKA J, MORRISON C. Application of molecularly imprinted polymers in analytical chiral separations and analysis[J]. Trends Anal Chem, 2018,102:91-102. doi: 10.1016/j.trac.2018.01.011

    96. [96]

      ASGARI S, BAGHERI H, ES-HAGHI A. An imprinted interpenetrating polymer network for microextraction in packed syringe of carbamazepine[J]. J Chromatogr A, 2017,1491:1-8. doi: 10.1016/j.chroma.2017.02.033

    97. [97]

      TSOI Y K, HO Y M, LEUNG K S. Selective recognition of arsenic by tailoring ion-imprinted polymer for ICP-MS Quantification[J]. Talanta, 2012,89:162-168. doi: 10.1016/j.talanta.2011.12.007

    98. [98]

      NEOLAKA Y A B, LAWA Y, NAAT J N. A Cr(Ⅵ)-imprinted-poly(4-VP-co-EGDMA) sorbent prepared using precipitation polymerization and its application for selective adsorptive removal and solid phase extraction of Cr(Ⅵ) ions from electroplating industrial wastewater[J]. React Funct Polym, 2020,147:104451-104464. doi: 10.1016/j.reactfunctpolym.2019.104451

    99. [99]

      SAY R, ERSÖZ A, TVRK H. Selective separation and preconcentration of cyanide by a column packed with cyanide-imprinted polymeric microbeads[J]. Sep Purif Technol, 2004,40(1):9-14. doi: 10.1016/j.seppur.2003.12.021

    100. [100]

      YANG Q, LI J, WANG X. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis[J]. Biosens Bioelectron, 2018,112:54-71. doi: 10.1016/j.bios.2018.04.028

    101. [101]

      LU H, XU S. Dual channel ion imprinted fluorescent polymers for dual mode simultaneous chromium speciation analysis[J]. Analyst, 2020,145(7):2661-2668. doi: 10.1039/D0AN00098A

    102. [102]

      ZHANG M Y, HUANG R F, MA X G. Selective Fluorescence sensor based on ion-imprinted polymer-modified quantum dots for trace detection of Cr(Ⅵ) in aqueous solution[J]. Anal Bioanal Chem, 2019,411(27):7165-7175. doi: 10.1007/s00216-019-02100-w

    103. [103]

      JINADASA K K, PENA-VAZQUEZ E, BERMEJO-BARRERA P. Synthesis and application of a surface ionic imprinting polymer on silica-coated Mn-doped ZnS quantum dots as a chemosensor for the selective quantification of inorganic arsenic in fish[J]. Anal Bioanal Chem, 2020,412(7):1663-1673. doi: 10.1007/s00216-020-02405-1

    104. [104]

      ZHOU C, YANG M, LI S S. Electrochemically etched gold wire microelectrode for the determination of inorganic arsenic[J]. Electrochim Acta, 2017,231:238-246. doi: 10.1016/j.electacta.2017.01.184

    105. [105]

      GUMPU M B, VEERAPANDIAN M, KRISHNAN U M. Electrochemical sensing platform for the determination of arsenite and arsenate using electroactive nanocomposite electrode[J]. Chem Eng J, 2018,351:319-327. doi: 10.1016/j.cej.2018.06.097

    106. [106]

      ALIZADEH T, SABZI R E, ALIZADEH H. Synthesis of nano-sized cyanide ion-imprinted polymer via non-covalent approach and its use for the fabrication of a CN--selective carbon nanotube impregnated carbon paste electrode[J]. Talanta, 2016,147:90-97. doi: 10.1016/j.talanta.2015.09.043

    107. [107]

      ALIZADEH T, ATAYI K. Synthesis of nano-sized hydrogen phosphate-imprinted polymer in acetonitrile/water mixture and its use as a recognition element of hydrogen phosphate selective all-solid state potentiometric electrode[J]. J Mol Recognit, 2018,31(2)e2678. doi: 10.1002/jmr.2678

    108. [108]

      KALITA H, CHISHOLM B, BEZBARUAH A N. Novel arsenic ion-imprinted polymer: simultaneous removal As(Ⅲ) and As(Ⅴ) from water[M]. World Environmental and Water Resources Congress 2011. 2011: 3396-3401.

    109. [109]

      HAO J, HAN M J, MENG X. Preparation and evaluation of thiol-functionalized activated alumina for arsenite removal from water[J]. J Hazard Mater, 2009,167(1/2/3):1215-1221.  

    110. [110]

      PRAMANIK K, SARKAR P, BHATTACHARYAY D. 3-Mercaptopropanoic acid modified cellulose filter paper for quick removal of arsenate from drinking water[J]. Int J Biol Macromol, 2019,122:185-194. doi: 10.1016/j.ijbiomac.2018.10.065

  • 加载中
    1. [1]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    5. [5]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    6. [6]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    7. [7]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    12. [12]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    13. [13]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    16. [16]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    17. [17]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    20. [20]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

Metrics
  • PDF Downloads(138)
  • Abstract views(4179)
  • HTML views(921)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return