Citation: Yong-Yan GUO, Yan-Fei TIAN, Ming-Ming DANG, Ping YANG, Yun-Fei LONG. Preparation of Thiourea Coordinated Chromium Black T Stabilized Silver Nanoclusters under Alkaline Environment[J]. Chinese Journal of Applied Chemistry, ;2021, 38(2): 195-201. doi: 10.19894/j.issn.1000-0518.200174 shu

Preparation of Thiourea Coordinated Chromium Black T Stabilized Silver Nanoclusters under Alkaline Environment

  • Corresponding author: Yun-Fei LONG, l_yunfei927@163.com
  • Received Date: 8 June 2020
    Accepted Date: 30 September 2020

    Fund Project: the National Natural Science Foundation of China 21275047the Natural Science Foundation of Hu′nan Province 2016JJ5005

Figures(9)

  • Silver nanoclusters have a wide range of application prospects because they have special physical and chemical properties. Since they are prone to agglomeration, it is of great significance to explore the method of preparing silver nanoclusters with strong fluorescence, high stablility and small particle sizes. A method for the rapid preparation of silver nanoclusters in alkaline environment with chromium black T as stabilizer and thiourea as coordination stabilizer was developed in this paper. Under the optimal conditions, the average particle size of the prepared silver nanoclusters is 1.67 nm, the particle size is mainly in the range of 0.74~3.33 nm, the lattice spacing is 0.2157 nm, and the lattice type is (102). The maximum excitation wavelength is 380 nm, the maximum emission wavelength is 463 nm, and the quantum yield is 1.64%.
  • 加载中
    1. [1]

      RITCHIE C M, JOHNSEN K R, KISER J R. Ag nanocluster formation using a cytosineoligonucleotide template[J]. J Phys Chem, 2007,111(1):175-181.

    2. [2]

      GE L, SUN X, HONG Q. Ratiometric nanocluster beacon: a label-free and sensitive fluorescent DNA detection platform[J]. ACS Appl Mater Interface, 2017,9(15):13102-13110. doi: 10.1021/acsami.7b03198

    3. [3]

      WANG W M, LI J, FAN J L. Ultrasensitive and non-labeling fluore-scence assay for biothiols using enhanced silver nanoclusters[J]. Sens Actuators B, 2018,267(4):174-180.

    4. [4]

      WANG J, ZHANG Z Y, GAO X. A single fluorophore ratiometric nanosensor based on dual-mmission DNA-templated silver nanoclusters for ultrasensitive and selective Pb2+ detection[J]. Sens Actuators B, 2019,282(3):712-718.  

    5. [5]

      LI D, QIAO Z Z, YU Y R. In situ fluorescence activation of DNA-silver nanoclusters as a label-free and general strategy for cell nucleus imaging[J]. Chem Commun, 2018,54(9):1089-1092. doi: 10.1039/C7CC08228B

    6. [6]

      LONG S J, LIU Y, DONG X N. Preparation and characterization of silver nanoparticales and its antibacterial property[J]. J Gansu Normal Univ, 2017,22(6):20-24.  

    7. [7]

      WANG L, HUANG Y, LI C. Hierarchical graphene@Fe3O4 nanocluster@carbon@MnO2 nanosheet array composites: synthesis and microwave absorption performance[J]. Phys Chem Phys, 2015,17(8):5878-5886. doi: 10.1039/C4CP05556J

    8. [8]

      TAGHIZADEH M T, VATANPARAST M. Ultrasonic-assisted synthysis of ZrO2 nanoparticles and their application to improve the chemical stability of nafion membrane in proton exchange membrane(PEM) fuel cells[J]. J Colloid Interface Sci, 2016,483(8):1-10.  

    9. [9]

      WU F, LIN Q, WANG L L. A DNA electrochemical biosensor based on triplex DNA-templated Ag/Pt nanoclusters for the detection of single-nucleotide variant[J]. Talanta, 2020,207(8):120257-120263.  

    10. [10]

      HU Y, JIA Y, LIAO Y W. Fluorometric assay of iron(Ⅱ) lactate hydrate and ammonium ferric citrate in food and medicine based on poly(sodium-p-styrenesulfonate)-enhanced Ag nanoclusters[J]. Spectrochim Acta, Part A, 2020,225(1):117519-117529.

    11. [11]

      FENG J J, ZHANG G, CHAI R T. Silver-nanocluster fluorescent probes for detection of L-cysteine[J]. Chinese J Anal Lab, 2020,39(1):48-52.  

    12. [12]

      LI Z Y, LI Y, GUO H X. Determination of malachite green using silver nanoparticles as fluorescent probes[J]. J Anal Sci, 2019,35(4):489-492.  

    13. [13]

      CERRETANI C, VOSCH T. Switchable dual-emissive DNA-stabilized silver nanoclusters[J]. ACS Omega, 2019,4(4):7895-7902. doi: 10.1021/acsomega.9b00614

    14. [14]

      LING Y, WANG L, ZHANG X Y. Ratiometric fluorescence detection of dopamine based on effect of ligand on the emission of Ag nanoclusters and aggregation-induced emission enhancement[J]. Sens Actuators B, 2020,310(5):858-861.  

    15. [15]

      LEE C Y, PARK K S, JUNG Y K. A label-free fluores-cent assay for deoxyribonuclease I activity based on DNA-templated silver nanocluster/graphene oxide nano-composite[J]. Biosens Bioelectron, 2017,93(7):293-297.

    16. [16]

      SONG C Z, WANG W H. Study on application conditions of solid-state chromium black T indicator[J]. Yunnan Chem Technol, 2019,46(3):130-131.  

    17. [17]

      LI S L. Analysis of three dimensional fluorescence spectra and determination of active components of Chinese medicine Rhubarb[D]. Shijiazhuang: Hebei Normal University, 2009.

    18. [18]

      LIU H M. The synthsis and application of carbon dots and sliver nanocluster[D]. Xiangtan: Hunan University of Science and Technology, 2017.

    19. [19]

      LU K Y, KONG L C, PAN H Y. Green Preparation and bacteria imaging of thermo-sensitive Cu-Ag fluorescent nanoclusters[J]. J Instrum Anal, 2018,37(10):1258-1263.  

    20. [20]

      GUO Y Y, ZENG W W, YANG P. Synthesis of silver nanoclusters stabilized by pH-regulated chromotropic acid 2R[J]. Chinese J Appl Chem, 2020,37(1):54-60.  

  • 加载中
    1. [1]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    4. [4]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    5. [5]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    6. [6]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    9. [9]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    10. [10]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    15. [15]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(17)
  • Abstract views(2475)
  • HTML views(368)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return