Citation: Fei TANG, Duo-Qin DU, Yun-Fei TAN, Li-Xiao QIN. Preparation and Characterization of MoO3-x Hexagonal Microrods as High-Efficiency Photocatalysts[J]. Chinese Journal of Applied Chemistry, ;2021, 38(1): 92-98. doi: 10.19894/j.issn.1000-0518.190335 shu

Preparation and Characterization of MoO3-x Hexagonal Microrods as High-Efficiency Photocatalysts

  • Corresponding author: Li-Xiao QIN, lxqin@cqu.edu.cn
  • Received Date: 16 December 2019
    Accepted Date: 14 August 2020

    Fund Project: the National Natural Science Foundation of China 21776025the Fundamental Research Funds for the Central Universities 2018CDKYGL0002the Fundamental Research Funds for the Central Universities 2018CDKYHG0028Chongqing Research Program of Basic Research and Frontier Technology CSTC2016JCYJA0474

Figures(5)

  • Hexagonal MoO3-x microrods with rich surface oxygen vacancies were prepared from MoO3 using a facile and controllable one-step reduction method with ascorbic acid as the reducing agent. The as-prepared MoO3-x microrods exhibit much better photocatalytic activity than MoO3 for degrading Rhodamine B due to the narrower band gap and wider range of sunlight absorption. Moreover, the photocatalytic activity of MoO3-x increases significantly with an increase in surface oxygen vacancies. For the MoO2.799 sample with a Mo5+ content of 20.1%, it only takes 60 minutes to degrade 90% of Rhodamine B in a solution with an initial concentration of 10 mg/L. This study may present a new strategy to synthesize semiconductor photocatalysts.
  • 加载中
    1. [1]

      LOW J X, YU J G, JARONIEC M. Heterojunction photocatalysts[J]. Adv Mater, 2017,29(20):1601694.1-1601694.20.

    2. [2]

      FUJISHIMA A, ZHANG X T, TRYK D A. TiO2 photocatalysis and related surface phenomena[J]. Surf Sci Rep, 2008,63(12):515-582. doi: 10.1016/j.surfrep.2008.10.001

    3. [3]

      CHEN X B, LIU L, YU P Y. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011,331(6018):746-750. doi: 10.1126/science.1200448

    4. [4]

      XIA Y C, WY C S, ZHAO N Y. Spongy MoO3 hierarchical nanostructures for excellent performance ethanol sensor[J]. Mater Lett, 2016,171:117-120. doi: 10.1016/j.matlet.2015.12.159

    5. [5]

      HU Y. Study on synthesis and photoelectricity properties of layered compound-molybdenum trioxide[D]. Anhui: Anhui University, 2007.

    6. [6]

      HEMANT K J, SARKAR S. A Novel in Situ γ-alumina coating method and CO oxidation over MoO3/Cu catalysts[J]. Ind Eng Chem Res, 2001,40(23):5543-5546. doi: 10.1021/ie990502p

    7. [7]

      DONG X D, DONG X T, LIU J H. Study of preparation and photochromism of MoO3 nanoparticles hydrosol[J]. Rare Met Mater Eng, 2005,34(3):421-424. doi: 10.3321/j.issn:1002-185X.2005.03.021

    8. [8]

      MEI X F, SONG J M, WANG H. Synthesis and photocatalytic activity of hexagonal phase MoO3[J]. Guangzhou Chem Ind, 2011,39(12):6-9. doi: 10.3969/j.issn.1001-9677.2011.12.002

    9. [9]

      GREINER M T, HELANDER M G, TANG W M. Universal energy-level alignment of molecules on metal oxides[J]. Nat Mater, 2012,11(1):76-81. doi: 10.1038/nmat3159

    10. [10]

      ZHENG L, XU Y, JIN D. Novel metastable hexagonal MoO3 nanobelts: synthesis, photochromic, and electrochromic properties[J]. Chem Mater, 2009,21(23):5681-5690. doi: 10.1021/cm9023887

    11. [11]

      CHITHAMBARARAJ A, SANJINI N S, BOSE A C. Flower-like hierarchical h-MoO3: new findings of efficient visible light driven nano photocatalyst for methylene blue degradation[J]. Catal Sci Tech, 2013,3(5):1405-1414. doi: 10.1039/c3cy20764a

    12. [12]

      WANG W, TADE M O, SHAO Z P. Nitrogen-doped simple and complex oxides for photocatalysis: a review[J]. Prog Mater Sci, 2018,92:33-63. doi: 10.1016/j.pmatsci.2017.09.002

    13. [13]

      PARK H, PARK Y, KIM W. Surface modification of TiO2 photocatalyst for environmental applications[J]. J Photochem Photobiol C, 2013,15:1-20. doi: 10.1016/j.jphotochemrev.2012.10.001

    14. [14]

      LIU Y B, ZHU G Q, GAO J Z. A novel synergy of Er3+/Fe3+ co-doped porous Bi5O7I microspheres with enhanced photocatalytic activity under visible-light irradiation[J]. Appl Catal B-Environ, 2017,205:421-432. doi: 10.1016/j.apcatb.2016.12.061

    15. [15]

      LINIC S, CHRISTOPHER P, INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nat Mater, 2011,10(12):911-921. doi: 10.1038/nmat3151

    16. [16]

      CORDERO-LANZAC T, PALOS R, ARANDES J M. Stability of an acid activated carbon based bifunctional catalyst for the raw bio-oil hydrodeoxygenation[J]. Appl Catal B-Environ, 2017,203:389-399. doi: 10.1016/j.apcatb.2016.10.018

    17. [17]

      WANG Y T, CAI J M, WU M Q. Rational construction of oxygen vacancies onto tungsten trioxide to improve visible light photocatalytic water oxidation reaction[J]. Appl Catal B-Environ, 2018,239:398-407. doi: 10.1016/j.apcatb.2018.08.029

    18. [18]

      CHENG H F, QIAN X F, KUWAHARA Y. A plasmonic molybdenum oxide hybrid with reversible tunability for visible-light-enhanced catalytic reactions[J]. Adv Mater, 2015,27(31):4616-4621. doi: 10.1002/adma.201501172

    19. [19]

      WANG Y L, LUO Q, WU N. Solution-processed MoO3: PEDOT: PSS hybrid hole transporting layer for inverted polymer solar cells[J]. ACS Appl Mater Interfaces, 2015,7(13):7170-7179. doi: 10.1021/am509049t

    20. [20]

      YANG B, CHEN Y, CUI Y. Over 100 nm thick MoOx films with superior hole collection and transport properties for organic solar cells[J]. Adv Energy Mater, 2018,8(25):1800698.1-1800698.9.

    21. [21]

      QIN P L, FANG G J, CHENG F. Sulfur-doped molybdenum oxide anode interface layer for organic solar cell application[J]. ACS Appl Mater Interfaces, 2014,6(4):2963-2973. doi: 10.1021/am405571a

    22. [22]

      SAKAUSHI K, THOMAS J, KASKEL S. Aqueous solution process for the synthesis and assembly of nanostructured one-dimensional alpha-MoO3 electrode materials[J]. Chem Mater, 2013,25(12):2557-2563. doi: 10.1021/cm401697z

  • 加载中
    1. [1]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    2. [2]

      Yachao HUANGChuanwang ZENGGuiyong LIUJinming ZENGChao LIUXiaopeng QI . Oxygen vacancies and phosphorus doping enhanced metal-organic framework derived nitrogen-doped carbon-coated Co3O4 bifunctional electrocatalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2251-2260. doi: 10.11862/CJIC.20250133

    3. [3]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    6. [6]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    7. [7]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    8. [8]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    9. [9]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    10. [10]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    11. [11]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    12. [12]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    13. [13]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    14. [14]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    15. [15]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    16. [16]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    17. [17]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    18. [18]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    19. [19]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    20. [20]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-0. doi: 10.3866/PKU.WHXB202402016

Metrics
  • PDF Downloads(43)
  • Abstract views(5110)
  • HTML views(1007)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return