用于氢过氧自由基光谱和动力学分析的腔衰荡光谱装置

胡晓 倪世传 杨娜娜 王春晖 韦娜娜 方波 刘栋沅 赵卫雄 张为俊

引用本文: 胡晓, 倪世传, 杨娜娜, 王春晖, 韦娜娜, 方波, 刘栋沅, 赵卫雄, 张为俊. 用于氢过氧自由基光谱和动力学分析的腔衰荡光谱装置[J]. 分析化学, 2023, 51(6): 994-1002. doi: 10.19756/j.issn.0253-3820.231062 shu
Citation:  HU Xiao,  NI Shi-Chuan,  YANG Na-Na,  WANG Chun-Hui,  WEI Na-Na,  FANG Bo,  LIU Dong-Yuan,  ZHAO Wei-Xiong,  ZHANG Wei-Jun. A Cavity Ring-down Spectrum Instrument for Analysis of HO2 Radical Spectroscopy and Kinetics[J]. Chinese Journal of Analytical Chemistry, 2023, 51(6): 994-1002. doi: 10.19756/j.issn.0253-3820.231062 shu

用于氢过氧自由基光谱和动力学分析的腔衰荡光谱装置

    通讯作者: 赵卫雄,E-mail:wxzhao@aiofm.ac.cn
  • 基金项目:

    国家自然科学基金项目(Nos.U21A2028,42022051)、中国科学院青年创新促进会项目(No.Y202089)和合肥研究院院长基金项目(No.YZJJ202101)资助。

摘要: 基于近红外腔衰荡光谱技术(CRDS)结合闪光光解,搭建了一套用于瞬态自由基探测的高灵敏度实验装置。通过扫描自主设计的光学谐振腔腔长,实现激光器与腔的模式耦合,基于线性回归求和(LRS)算法对衰荡曲线进行拟合,获得衰荡时间,在20.3 km有效光程和6.25 s采集时间下,系统可实现5.05×10-11 cm-1的探测灵敏度。使用266 nm Nd:YAG激光器光解臭氧(O3)和乙炔(C2H2)的混合物产生氢过氧自由基(HO2·),测量了HO2·在6638.203 cm-1位置处的特征吸收,获得了分辨率为0.002 cm-1的吸收光谱。在2 kPa条件下,通过测量HO2·自反应的衰变获得了6638.203 cm-1处HO2·的吸收截面(σ)为3.3×10-19 cm2/molecule,对应的吸收谱线强度(S)为6.02×10-21 cm-1/(molecule/cm2)。

English


    1. [1]

      HEARD D E, PILLING M J. Chem. Rev., 2003, 103(12):5163-5198.HEARD D E, PILLING M J. Chem. Rev., 2003, 103(12):5163-5198.

    2. [2]

      LU K, GUO S, TAN Z, WANG H, SHANG D, LIU Y, LI X, WU Z, HU M, ZHANG Y. Natl. Sci. Rev., 2019, 6(3):579-594.LU K, GUO S, TAN Z, WANG H, SHANG D, LIU Y, LI X, WU Z, HU M, ZHANG Y. Natl. Sci. Rev., 2019, 6(3):579-594.

    3. [3]

      ARCHIBALD A T, NEU J L, ELSHORBANY Y F, COOPER O R, YOUNG P J, AKIYOSHI H, COX R A, COYLE M, DERWENT R G, DEUSHI M, FINCO A, FROST G J, GALBALLY I E, GEROSA G, GRANIER C, GRIFFITHS P T, HOSSAINI R, HU L, JÖCKEL P, JOSSE B, LIN M Y, MERTENS M, MORGENSTERN O, NAJA M, NAIK V, OLTMANS S, PLUMMER D A, REVELL L E, SAIZ-LOPEZ A, SAXENA P, SHIN Y M, SHAHID I, SHALLCROSS D, TILMES S, TRICKL T, WALLINGTON T J, WANG T, WORDEN H M, ZENG G. Elementa-Sci. Anthropocene, 2020, 8(1):034.ARCHIBALD A T, NEU J L, ELSHORBANY Y F, COOPER O R, YOUNG P J, AKIYOSHI H, COX R A, COYLE M, DERWENT R G, DEUSHI M, FINCO A, FROST G J, GALBALLY I E, GEROSA G, GRANIER C, GRIFFITHS P T, HOSSAINI R, HU L, JÖCKEL P, JOSSE B, LIN M Y, MERTENS M, MORGENSTERN O, NAJA M, NAIK V, OLTMANS S, PLUMMER D A, REVELL L E, SAIZ-LOPEZ A, SAXENA P, SHIN Y M, SHAHID I, SHALLCROSS D, TILMES S, TRICKL T, WALLINGTON T J, WANG T, WORDEN H M, ZENG G. Elementa-Sci. Anthropocene, 2020, 8(1):034.

    4. [4]

      TANG Xiao-Yan, ZHANG Yuan-Hang, SHAO Min. Atmospheric Environmental Chemistry, Beijing:Higher Education Press, 2006:242-244. 唐孝炎, 张远航, 邵敏. 大气环境化学, 北京:高等教育出版社, 2006:242-244.

    5. [5]

      ZHU R S, LIN M C. Phys. Chem. Commun., 2001, 4(23):106-111.ZHU R S, LIN M C. Phys. Chem. Commun., 2001, 4(23):106-111.

    6. [6]

      CHRISTENSEN L E, OKUMURA M, SANDER S P, SALAWITCH R J, TOON G C, SEN B, BLAVIER J F, JUCKS K W. Geophys. Res. Lett., 2002, 29(9):1299.CHRISTENSEN L E, OKUMURA M, SANDER S P, SALAWITCH R J, TOON G C, SEN B, BLAVIER J F, JUCKS K W. Geophys. Res. Lett., 2002, 29(9):1299.

    7. [7]

      FANG B, YANG N, ZHAO W, WANG C, ZHANG W, SONG W, VENABLES D S, CHEN W. Appl. Opt., 2019, 58(32):8743-8750.FANG B, YANG N, ZHAO W, WANG C, ZHANG W, SONG W, VENABLES D S, CHEN W. Appl. Opt., 2019, 58(32):8743-8750.

    8. [8]

      STONE D, ROWLEY D M. Phys. Chem. Chem. Phys., 2005, 7(10):2156-2163.STONE D, ROWLEY D M. Phys. Chem. Chem. Phys., 2005, 7(10):2156-2163.

    9. [9]

      NIELSEN O J, JOHNSON M S, WALLINGTON T J, CHRISTENSEN L K, PLATZ J. Int. J. Chem. Kinet., 2002, 34(5):283-291.NIELSEN O J, JOHNSON M S, WALLINGTON T J, CHRISTENSEN L K, PLATZ J. Int. J. Chem. Kinet., 2002, 34(5):283-291.

    10. [10]

      ENGLISH A M, HANSEN J C, SZENTE J J, MARICQ M M. J. Phys. Chem. A, 2008, 112(39):9220-9228.ENGLISH A M, HANSEN J C, SZENTE J J, MARICQ M M. J. Phys. Chem. A, 2008, 112(39):9220-9228.

    11. [11]

      TENG C C, YAN C, ROUSSO A, ZHONG H, CHEN T, ZHANG E J, JU Y, WYSOCKI G. Opt. Express, 2021, 29(2):2769- 2779.TENG C C, YAN C, ROUSSO A, ZHONG H, CHEN T, ZHANG E J, JU Y, WYSOCKI G. Opt. Express, 2021, 29(2):2769- 2779.

    12. [12]

      GIANELLA M, REUTER S, PRESS S A, SCHMIDT-BLEKER A, HELDEN J H V, RITCHIE G A D. Plasma Sources Sci. Technol., 2018, 27(9):095013.GIANELLA M, REUTER S, PRESS S A, SCHMIDT-BLEKER A, HELDEN J H V, RITCHIE G A D. Plasma Sources Sci. Technol., 2018, 27(9):095013.

    13. [13]

      MAITY A, MAITHANI S, PRADHAN M. Anal. Chem., 2021, 93(1):388-416.MAITY A, MAITHANI S, PRADHAN M. Anal. Chem., 2021, 93(1):388-416.

    14. [14]

      CHEN Bing, ZHOU Ze-Yi, KANG Peng, LIU An-Wen, HU Shui-Ming. Spectrosc. Spectral Anal., 2015, 35(4):971-974. 陈兵, 周泽义, 康鹏, 刘安雯, 胡水明. 光谱学与光谱分析, 2015, 35(4):971-974.

    15. [15]

      WANG C, ZHAO W, FANG B, YANG N, CHENG F, HU X, CHEN Y, ZHANG W, FITTSCHEN C, CHEN W. Opt. Express, 2022, 30(21):37446-37456.WANG C, ZHAO W, FANG B, YANG N, CHENG F, HU X, CHEN Y, ZHANG W, FITTSCHEN C, CHEN W. Opt. Express, 2022, 30(21):37446-37456.

    16. [16]

      ASSAF E, ASVANY O, VOTAVA O, BATUT S, SCHOEMAECKER C, FITTSCHEN C. J. Quant. Spectrosc. Radiat. Transfer, 2017, 201:161-170.ASSAF E, ASVANY O, VOTAVA O, BATUT S, SCHOEMAECKER C, FITTSCHEN C. J. Quant. Spectrosc. Radiat. Transfer, 2017, 201:161-170.

    17. [17]

      ASSAF E, FITTSCHEN C. J. Phys. Chem. A, 2016, 120(36):7051-7059.ASSAF E, FITTSCHEN C. J. Phys. Chem. A, 2016, 120(36):7051-7059.

    18. [18]

      THIÉBAUD J, FITTSCHEN C. Appl. Phys. B, 2006, 85(2-3):383-389.THIÉBAUD J, FITTSCHEN C. Appl. Phys. B, 2006, 85(2-3):383-389.

    19. [19]

      ASSAF E, LIU L, SCHOEMAECKER C, FITTSCHEN C. J. Quant. Spectrosc. Radiat. Transfer, 2018, 211:107-114.ASSAF E, LIU L, SCHOEMAECKER C, FITTSCHEN C. J. Quant. Spectrosc. Radiat. Transfer, 2018, 211:107-114.

    20. [20]

      JANS E R, JONES I W, YANG X, MILLER T A, STANTON J F, ADAMOVICH I V. Combust. Flame, 2022, 241:112097.JANS E R, JONES I W, YANG X, MILLER T A, STANTON J F, ADAMOVICH I V. Combust. Flame, 2022, 241:112097.

    21. [21]

      EVEREST M A, ATKINSON D B. Rev. Sci. Instrum., 2008, 79(2):023108.EVEREST M A, ATKINSON D B. Rev. Sci. Instrum., 2008, 79(2):023108.

    22. [22]

      YAN C, TENG C C, CHEN T, ZHONG H, ROUSSO A, ZHAO H, MA G, WYSOCKI G, JU Y. Combust. Flame, 2020, 212:135-141.YAN C, TENG C C, CHEN T, ZHONG H, ROUSSO A, ZHAO H, MA G, WYSOCKI G, JU Y. Combust. Flame, 2020, 212:135-141.

    23. [23]

      ATKINSON R, BAULCH D L, COX R A, CROWLEY J N, HAMPSON R F, HYNES R G, JENKIN M E, ROSSI M J, TROE J. Atmos. Chem. Phys., 2004, 4(6):1461-1738.ATKINSON R, BAULCH D L, COX R A, CROWLEY J N, HAMPSON R F, HYNES R G, JENKIN M E, ROSSI M J, TROE J. Atmos. Chem. Phys., 2004, 4(6):1461-1738.

    24. [24]

      TANG Y, TYNDALL G S, ORLANDO J J. J. Phys. Chem. A, 2010, 114(1):369-378.TANG Y, TYNDALL G S, ORLANDO J J. J. Phys. Chem. A, 2010, 114(1):369-378.

    25. [25]

      CHEN W D, YI H M, WU T, ZHAO W X, LENGIGNON C, WANG G X, FERTEIN E, COEUR C, WYSOCKI G, WANG T, SIGRIST M W, GAO X M, ZHANG W J. Photonic Sensing of Reactive Atmospheric Species. American Cancer Society, 2017:4.CHEN W D, YI H M, WU T, ZHAO W X, LENGIGNON C, WANG G X, FERTEIN E, COEUR C, WYSOCKI G, WANG T, SIGRIST M W, GAO X M, ZHANG W J. Photonic Sensing of Reactive Atmospheric Species. American Cancer Society, 2017:4.

    26. [26]

      DJEHICHE M, TOMAS A, FITTSCHEN C, CODDEVILLE P. Z. Phys. Chem., 2011, 225(9-10):983-992.DJEHICHE M, TOMAS A, FITTSCHEN C, CODDEVILLE P. Z. Phys. Chem., 2011, 225(9-10):983-992.

  • 加载中
计量
  • PDF下载量:  9
  • 文章访问数:  946
  • HTML全文浏览量:  39
文章相关
  • 收稿日期:  2023-02-21
  • 修回日期:  2023-04-19
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章