单颗粒电感耦合等离子体飞行时间质谱测定生物样品中掺金属微塑料

杨璞 方昊 孟紫薇 郑令娜 汪冰 王萌 刘广才 程文播 丰伟悦

引用本文: 杨璞, 方昊, 孟紫薇, 郑令娜, 汪冰, 王萌, 刘广才, 程文播, 丰伟悦. 单颗粒电感耦合等离子体飞行时间质谱测定生物样品中掺金属微塑料[J]. 分析化学, 2023, 51(6): 1059-1065. doi: 10.19756/j.issn.0253-3820.231035 shu
Citation:  YANG Pu,  FANG Hao,  MENG Zi-Wei,  ZHENG Ling-Na,  WANG Bing,  WANG Meng,  LIU Guang-Cai,  CHENG Wen-Bo,  FENG Wei-Yue. Determination of Metal-doped Microplastic in Biological Samples by Single Particle-Inductively Coupled Plasma Time-of-Flight Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, 2023, 51(6): 1059-1065. doi: 10.19756/j.issn.0253-3820.231035 shu

单颗粒电感耦合等离子体飞行时间质谱测定生物样品中掺金属微塑料

    通讯作者: 王萌,E-mail:wangmeng@ihep.ac.cn; 程文播,E-mail:chengwb@sibet.ac.cn
  • 基金项目:

    广东省基础与应用基础研究基金区域联合基金项目(No.DG2231351B)、环境化学国家重点实验室开放课题项目(No.KF2020-19)和天津市医用质谱精准诊断企业重点实验室2022年度开放课题项目资助。

摘要: 建立了单颗粒电感耦合等离子体飞行时间质谱(SP-ICP-TOF-MS)分析生物样品中掺金属聚苯乙烯颗粒的新方法。采用四甲基氢氧化铵和过氧化氢消解含有聚苯乙烯微塑料颗粒的小鼠肝脏样品;采用离心浓缩的方法消除消解液中的基体,以满足SP-ICP-TOF-MS分析要求。本方法对聚苯乙烯颗粒的回收率为102%±11%,微塑料颗粒中Ce、Eu、Ho和Lu的检出限为0.004~0.026 fg,颗粒数量浓度检出限为37 particles/mL。本方法为研究微塑料的环境污染和毒理提供了新途径。

English


    1. [1]

      KOELMANS A A, BESSELING E, FOEKEMA E, KOOI M, MINTENIG S, OSSENDORP B C, REDONDOHASSELERHARM P E, VERSCHOOR A, VAN WEZEL A P, SCHEFFER M. Environ. Sci. Technol., 2017, 51(20):11513-11519.KOELMANS A A, BESSELING E, FOEKEMA E, KOOI M, MINTENIG S, OSSENDORP B C, REDONDOHASSELERHARM P E, VERSCHOOR A, VAN WEZEL A P, SCHEFFER M. Environ. Sci. Technol., 2017, 51(20):11513-11519.

    2. [2]

      HARTMANN N B, HÜFFER T, THOMPSON R C, HASSELLÖV M, VERSCHOOR A, DAUGAARD A E, RIST S, KARLSSON T, BRENNHOLT N, COLE M, HERRLING M P, HESS M C, IVLEVA N P, LUSHER A L, WAGNER M. Environ. Sci. Technol., 2019, 53(3):1039-1047.HARTMANN N B, HÜFFER T, THOMPSON R C, HASSELLÖV M, VERSCHOOR A, DAUGAARD A E, RIST S, KARLSSON T, BRENNHOLT N, COLE M, HERRLING M P, HESS M C, IVLEVA N P, LUSHER A L, WAGNER M. Environ. Sci. Technol., 2019, 53(3):1039-1047.

    3. [3]

      NOR N H M, KOOI M, DIEPENS N J, KOELMANS A A. Environ. Sci. Technol., 2021, 55(8):5084-5096.NOR N H M, KOOI M, DIEPENS N J, KOELMANS A A. Environ. Sci. Technol., 2021, 55(8):5084-5096.

    4. [4]

      SCHWABL P, KÖPPEL S, KÖNIGSHOFER P, BUCSICS T, TRAUNER M, REIBERGER T, LIEBMANN B. Ann. Intern. Med., 2019, 171(7):453-457.SCHWABL P, KÖPPEL S, KÖNIGSHOFER P, BUCSICS T, TRAUNER M, REIBERGER T, LIEBMANN B. Ann. Intern. Med., 2019, 171(7):453-457.

    5. [5]

      RAGUSA A, SVELATO A, SANTACROCE C, CATALANO P, NOTARSTEFANO V, CARNEVALI O, PAPA F, RONGIOLETTI M C A, BAIOCCO F, DRAGHI S, D'AMORE E, RINALDO D, MATTA M, GIORGINI E. Environ. Int., 2021, 146:106274.RAGUSA A, SVELATO A, SANTACROCE C, CATALANO P, NOTARSTEFANO V, CARNEVALI O, PAPA F, RONGIOLETTI M C A, BAIOCCO F, DRAGHI S, D'AMORE E, RINALDO D, MATTA M, GIORGINI E. Environ. Int., 2021, 146:106274.

    6. [6]

      LEHNER R, WEDER C, PETRI-FINK A, ROTHEN-RUTISHAUSER B. Environ. Sci. Technol., 2019, 53(4):1748-1765.LEHNER R, WEDER C, PETRI-FINK A, ROTHEN-RUTISHAUSER B. Environ. Sci. Technol., 2019, 53(4):1748-1765.

    7. [7]

      CAI H, XU E G, DU F, LI R, LIU J, SHI H. Chem. Eng. J., 2021, 410:128208.CAI H, XU E G, DU F, LI R, LIU J, SHI H. Chem. Eng. J., 2021, 410:128208.

    8. [8]

      DAVRANCHE M, LORY C, JUGE C L, BLANCHO F, DIA A, GRASSL B, EL HADRI H, PASCAL P Y, GIGAULT J. Nanoimpact, 2020, 20:100262.DAVRANCHE M, LORY C, JUGE C L, BLANCHO F, DIA A, GRASSL B, EL HADRI H, PASCAL P Y, GIGAULT J. Nanoimpact, 2020, 20:100262.

    9. [9]

      LI X, CHEN L, MEI Q, DONG B, DAI X, DING G, ZENG E Y. Water Res., 2018, 142:75-85.LI X, CHEN L, MEI Q, DONG B, DAI X, DING G, ZENG E Y. Water Res., 2018, 142:75-85.

    10. [10]

      JENNER L C, ROTCHELL J M, BENNETT R T, COWEN M, TENTZERIS V, SADOFSKY L R. Sci. Total Environ., 2022, 831:154907.JENNER L C, ROTCHELL J M, BENNETT R T, COWEN M, TENTZERIS V, SADOFSKY L R. Sci. Total Environ., 2022, 831:154907.

    11. [11]

      KENNEDY A J, HULL M S, DIAMOND S, CHAPPELL M, BEDNAR A J, LAIRD J G, MELBY N L, STEEVENS J A. Environ. Sci. Technol., 2015, 49(20):12490-12499.KENNEDY A J, HULL M S, DIAMOND S, CHAPPELL M, BEDNAR A J, LAIRD J G, MELBY N L, STEEVENS J A. Environ. Sci. Technol., 2015, 49(20):12490-12499.

    12. [12]

      POMPA P P, VECCHIO G, GALEONE A, BRUNETTI V, MAIORANO G, SABELLA S, CINGOLANI R. Nanoscale, 2011, 3(7):2889-2897.POMPA P P, VECCHIO G, GALEONE A, BRUNETTI V, MAIORANO G, SABELLA S, CINGOLANI R. Nanoscale, 2011, 3(7):2889-2897.

    13. [13]

      WITTMAACK K. Environ. Health Persp., 2007, 115(2):187-194.WITTMAACK K. Environ. Health Persp., 2007, 115(2):187-194.

    14. [14]

      SCHWERTFEGER D M, VELICOGNA J R, JESMER A H, SCROGGINS R P, PRINCZ J I. Anal. Chem., 2016, 88(20):9908-9914.SCHWERTFEGER D M, VELICOGNA J R, JESMER A H, SCROGGINS R P, PRINCZ J I. Anal. Chem., 2016, 88(20):9908-9914.

    15. [15]

      ZHANG Chun-Mei, XU Qiang, DU Jing, TIAN Jia-Shen, ZHANG Hua. Chin. J. Anal. Chem., 2020, 48(9):1260-1267. 张春梅, 徐强, 杜静, 田甲申, 张华. 分析化学, 2020, 48(9):1260-1267.

    16. [16]

      LUO Rui-Ping, ZHENG Ling-Na, LI Liang, WANG Juan, FENG Wei-Yue, YU Xiang-Hua, WANG Meng. Chin. J. Anal. Chem., 2018, 46(6):925-930. 罗瑞平, 郑令娜, 李亮, 王娟, 丰伟悦, 喻湘华, 王萌. 分析化学, 2018, 46(6):925-930.

    17. [17]

      LABORDA F, TRUJILLO C, LOBINSKI R. Talanta, 2021, 221:121486.LABORDA F, TRUJILLO C, LOBINSKI R. Talanta, 2021, 221:121486.

    18. [18]

      JIMENEZ-LAMANA J, MARIGLIANO L, ALLOUCHE J, GRASSL B, SZPUNAR J, REYNAUD S. Anal. Chem., 2020, 92(17):11664-11672.JIMENEZ-LAMANA J, MARIGLIANO L, ALLOUCHE J, GRASSL B, SZPUNAR J, REYNAUD S. Anal. Chem., 2020, 92(17):11664-11672.

    19. [19]

      MITRANO D M, BELTZUNG A, FREHLAND S, SCHMIEDGRUBER M, CINGOLANI A, SCHMIDT F. Nat. Nanotechnol., 2019, 14(4):362-368.MITRANO D M, BELTZUNG A, FREHLAND S, SCHMIEDGRUBER M, CINGOLANI A, SCHMIDT F. Nat. Nanotechnol., 2019, 14(4):362-368.

    20. [20]

      ENDERS K, LENZ R, BEER S, STEDMON C A. ICES J. Mar. Sci. 2017, 74(1):326-331.ENDERS K, LENZ R, BEER S, STEDMON C A. ICES J. Mar. Sci. 2017, 74(1):326-331.

    21. [21]

      CHANG P P, ZHENG L N, WANG B, CHEN M L, WANG M, WANG J H, FENG W Y. At. Spectrosc., 2022, 43(3):255-265.CHANG P P, ZHENG L N, WANG B, CHEN M L, WANG M, WANG J H, FENG W Y. At. Spectrosc., 2022, 43(3):255-265.

    22. [22]

      TIAN X, JIANG H, HU L, WANG M, CUI W, SHI J, LIU G, YIN Y, CAI Y, JIANG G. TrAC, Trends Anal. Chem., 2022, 157:116746.TIAN X, JIANG H, HU L, WANG M, CUI W, SHI J, LIU G, YIN Y, CAI Y, JIANG G. TrAC, Trends Anal. Chem., 2022, 157:116746.

    23. [23]

      CHAO Jing-Bo, WANG Jing-Ru, ZHANG Jing-Qi. Chin. J. Anal. Chem., 2020, 48(7):946-954. 巢静波, 王静如, 张靖其. 分析化学, 2020, 48(7):946-954.

    24. [24]

      GAO Ya, GE Xiu-Jie, CHEN Lan, LIU Ren-Xiao, GUO Yu-Ting, GE Guang-Lu. Chin. J. Anal. Chem., 2021, 49(2):271- 281. 高雅, 葛秀杰, 陈岚, 刘忍肖, 郭玉婷, 葛广路. 分析化学, 2021, 49(2):271-281.

    25. [25]

      MONTANO M D, OLESIK J W, BARBER A G, CHALLIS K, RANVILLE J F. Anal. Bioanal. Chem., 2016, 408(19):5053- 5074.MONTANO M D, OLESIK J W, BARBER A G, CHALLIS K, RANVILLE J F. Anal. Bioanal. Chem., 2016, 408(19):5053- 5074.

    26. [26]

      MERRIFIELD R C, STEPHAN C, LEAD J R. Environ. Sci. Technol., 2018, 52(4):2271-2277.MERRIFIELD R C, STEPHAN C, LEAD J R. Environ. Sci. Technol., 2018, 52(4):2271-2277.

  • 加载中
计量
  • PDF下载量:  16
  • 文章访问数:  674
  • HTML全文浏览量:  41
文章相关
  • 收稿日期:  2023-02-04
  • 修回日期:  2023-04-26
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章