Citation: LI Zi-Hao,  JIANG Xiu-E. In-situ Techniques for Revealing Growth Mechanism of Metal-organic Frameworks[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 790-799. doi: 10.19756/j.issn.0253-3820.231017 shu

In-situ Techniques for Revealing Growth Mechanism of Metal-organic Frameworks

  • Corresponding author: JIANG Xiu-E, jiangxiue@ciac.ac.cn
  • Received Date: 15 January 2023
    Revised Date: 3 February 2023

    Fund Project: Supported by the National Natural Science Foundation of China (No. 22025406) and the Inter-Government International Science and Technology Innovation Cooperation Project from Ministry of Science and Technology of China (No. 2022YFE0113000).

  • Metal-organic frameworks (MOFs) are a class of nanoporous materials, popularized over the past 20 years, and have a wide range of applications in many fields such as catalysis, adsorption, separation and so on. The realization of the above functions is closely related to the structure of MOFs, and understanding the growth mechanism of MOFs in solution is critical to control the structure and function of MOFs. However, relevant studies are insufficient. This review summarized the researches on the nucleation and growth of MOFs using the advanced in-situ techniques in recent years, and briefly summarized the growth mechanism of MOFs. Finally, the development trend of the research on the growth mechanism of MOFs was prospected.
  • 加载中
    1. [1]

      FURUKAWA H, CORDOVA K E, O'KEEFFE M, YAGHI O M. Science, 2013, 341(6149):1230444.

    2. [2]

      CHEETHAM A K, RAO C N R, FELLER R K. Chem. Commun., 2006, 46(46):4780-4795.

    3. [3]

      MOOSAVI S M, NANDY A, JABLONKA K M, ONGARI D, JANET J P, BOYD P G, LEE Y, SMIT B, KULIK H J. Nat. Commun., 2020, 11(1):4068.

    4. [4]

      ZHANG X, MADDOCK J, NENOFF T M, DENECKE M A, YANG S, SCHRÖDER M. Chem. Soc. Rev., 2022, 51(8):3243-3262.

    5. [5]

      ZENG H, XIE M, WANG T, WEI R J, XIE X J, ZHAO Y, LU W, LI D. Nature, 2021, 595(7868):542-548.

    6. [6]

      KONDO Y, KUWAHARA Y, MORI K, YAMASHITA H. Chem, 2022, 8(11):2924-2938.

    7. [7]

      ZHAO Y, ZENG H, ZHU X W, LU W, LI D. Chem. Soc. Rev., 2021, 50(7):4484-4513.

    8. [8]

      ZHAO R, LIANG Z, ZOU R, XU Q. Joule, 2018, 2(11):2235-2259.

    9. [9]

      VAN VLEET M J, WENG T, LI X, SCHMIDT J R. Chem. Rev., 2018, 118(7):3681-3721.

    10. [10]

      WANG Y, LI L, LIANG H, XING Y, YAN L, DAI P, GU X, ZHAO G, ZHAO X. ACS Nano, 2019, 13(3):2901-2912.

    11. [11]

      LAN X, HUANG N, WANG J, WANG T. Chem. Commun., 2018, 54(6):584-587.

    12. [12]

      CERASALE D J, WARD D C, EASUN T L. Nat. Rev. Chem., 2022, 6(1):9-30.

    13. [13]

      LI J, GONG J. Energy Environ. Sci., 2020, 13(11):3748-3779.

    14. [14]

      SHEPPARD C J R. Appl. Sci., 2021, 11(19):8981.

    15. [15]

      HAGUENAU F, HAWKES P W, HUTCHISON J L, SATIAT-JEUNEMAÎTRE B, SIMON G T, WILLIAMS D B. Microsc. Microanal., 2003, 9(2):96-138.

    16. [16]

      WILLIAMS D B, CARTER C B. The Transmission Electron Microscope. In:Williams D B, Carter C B eds. Transmission Electron Microscopy:A Textbook for Materials Science Boston, MA:Springer US 2009:3-22.

    17. [17]

      KIM B H, YANG J, LEE D, CHOI B K, HYEON T, PARK J. Adv. Mater., 2018, 30(4):1703316.

    18. [18]

      ZHU Y, CISTON J, ZHENG B, MIAO X, CZARNIK C, PAN Y, SOUGRAT R, LAI Z, HSIUNG C E, YAO K, PINNAU I, PAN M, HAN Y. Nat. Mater., 2017, 16(5):532-536.

    19. [19]

      LIU X, CHEE S W, RAJ S, SAWCZYK M, KRÁL P, MIRSAIDOV U. Proc. Natl. Acad. Sci. U.S.A., 2021, 118(10):e2008880118.

    20. [20]

      BUTT H J, JASCHKE M, DUCKER W. Bioelectrochem. Bioenerg., 1995, 38(1):191-201.

    21. [21]

      GARCIA R, HERRUZO E T. Nat. Nanotechnol., 2012, 7(4):217-226.

    22. [22]

      SUMMERFIELD A, CEBULA I, SCHRÖDER M, BETON P H. J. Phys. Chem. C, 2015, 119(41):23544-23551.

    23. [23]

      SZELAGOWSKA-KUNSTMAN K, CYGANIK P, GORYL M, ZACHER D, PUTEROVA Z, FISCHER R A, SZYMONSKI M. J. Am. Chem. Soc., 2008, 130(44):14446-14447.

    24. [24]

      RYNIEWICZ A M, RYNIEWICZ A, RYNIEWICZ W, GASKA A. J. Phys.:Conf. Ser., 2010, 238:012059.

    25. [25]

      MANDEMAKER L D B, FILEZ M, DELEN G, TAN H, ZHANG X, LOHSE D, WECKHUYSEN B M. J. Phys. Chem. Lett., 2018, 9(8):1838-1844.

    26. [26]

      OHNSORG M L, BEAUDOIN C K, ANDERSON M E. Langmuir, 2015, 31(22):6114-6121.

    27. [27]

      WANG H, ZHANG T, ZHOU X. J. Phys.:Condens. Matter, 2019, 31(47):473001.

    28. [28]

      HAN J, HE X, LIU J, MING R, LIN M, LI H, ZHOU X, DENG H. Chem, 2022, 8(6):1637-1657.

    29. [29]

      HADJIIVANOV K I, PANAYOTOV D A, MIHAYLOV M Y, IVANOVA E Z, CHAKAROVA K K, ANDONOVA S M, DRENCHEV N L. Chem. Rev., 2021, 121(3):1286-1424.

    30. [30]

      BEHROOZMAND A A, KEATING K, AUKEN E. Surv. Geophys., 2015, 36(1):27-85.

    31. [31]

      BONHOMME C, GERVAIS C, LAURENCIN D. Prog. Nucl. Magn. Reson. Spectrosc., 2014, 77:1-48.

    32. [32]

      ZIA K, SIDDIQUI T, ALI S, FAROOQ I, ZAFAR M S, KHURSHID Z. Eur. J. Dent., 2019, 13(1):124-128.

    33. [33]

      RATHKE J W, KLINGLER R J, GERALD II R E, KRAMARZ K W, WOELK K. Prog. Nucl. Magn. Reson. Spectrosc., 1997, 30(3-4):209-253.

    34. [34]

      PECHER O, VYALIKH A, GREY C P. AIP Conf. Proc., 2016, 1765(1):020011.

    35. [35]

      JONES C L, HUGHES C E, YEUNG H H M, PAUL A, HARRIS K D M, EASUN T L. Chem. Sci., 2021, 12(4):1486-1494.

    36. [36]

      LARKIN P J. Chapter 2-Basic Principles. In:Larkin P J Ed. Infrared and Raman Spectroscopy (Second Edition):Elsevier, 2018:7-28.

    37. [37]

      FAID A Y, BARNETT A O, SELAND F, SUNDE S. Electrochim. Acta, 2020, 361:137040.

    38. [38]

      EMBRECHTS H, KRIESTEN M, ERMER M, PEUKERT W, HARTMANN M, DISTASO M. RSC Adv., 2020, 10(13):7336-7348.

    39. [39]

      LI Z, WU Y, LI J, ZHANG Y, ZOU X, LI F. Chem. Eur. J., 2015, 21(18):6913-6920.

    40. [40]

      LI Y, CAO Y, GUO Y. Chin. J. Chem., 2020, 38(1):25-38.

    41. [41]

      CHEN G, FAN M, LIU Y, SUN B, LIU M, WU J, LI N, GUO M. Front. Chem., 2019, 7:703.

    42. [42]

      HALE O J, COOPER H J. Biochem. Soc. Trans., 2020, 48(1):317-326.

    43. [43]

      SALIONOV D, SEMIVRAZHSKAYA O O, CASATI N P M, RANOCCHIARI M, BJELIĆ S, VEREL R, VAN BOKHOVEN J A, SUSHKEVICH V L. Nat. Commun., 2022, 13(1):3762.

    44. [44]

      CIPELLETTI L, TRAPPE V, PINE D J. Scattering Techniques. Fluids, Colloids and Soft Materials, 2016:131-148.

    45. [45]

      VAN CLEUVENBERGEN S, SMITH Z J, DESCHAUME O, BARTIC C, WACHSMANN-HOGIU S, VERBIEST T, VAN DER VEEN M A. Nat. Commun., 2018, 9(1):3418.

    46. [46]

      ZHANG J P, LIAO P Q, ZHOU H L, LIN R B, CHEN X M. Chem. Soc. Rev., 2014, 43(16):5789-5814.

    47. [47]

      MANOVA D, MÄNDL S. J. Appl. Phys., 2019, 126(20):200901.

    48. [48]

      YEUNG H H M, SAPNIK A F, MASSINGBERD-MUNDY F, GAULTOIS M W, WU Y, FRASER D A X, HENKE S, PALLACH R, HEIDENREICH N, MAGDYSYUK O V, VO N T, GOODWIN A L. Angew. Chem. Int. Ed., 2019, 58(2):566-571.

    49. [49]

      YONEYA M, TSUZUKI S, AOYAGI M. Phys. Chem. Chem. Phys., 2015, 17(14):8649-8652.

    50. [50]

      AMIRJALAYER S, TAFIPOLSKY M, SCHMID R. J. Phys. Chem. Lett., 2014, 5(18):3206-3210.

    51. [51]

      CANTU D C, MCGRAIL B P, GLEZAKOU V A. Chem. Mater., 2014, 26(22):6401-6409.

    52. [52]

      SHU C H, HE Y, ZHANG R X, CHEN J L, WANG A, LIU P N. J. Am. Chem. Soc., 2020, 142(39):16579-16586.

  • 加载中
    1. [1]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    2. [2]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    3. [3]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    6. [6]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    7. [7]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    8. [8]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    9. [9]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    10. [10]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    11. [11]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    17. [17]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    18. [18]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    19. [19]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    20. [20]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

Metrics
  • PDF Downloads(12)
  • Abstract views(1007)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return