Citation: GUO Hao-Ran,  TANG Ji-Lin. Recent Progress of Atomic Force Microscopy for in Situ Electrochemical Studies[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 733-743. doi: 10.19756/j.issn.0253-3820.231014 shu

Recent Progress of Atomic Force Microscopy for in Situ Electrochemical Studies

  • Corresponding author: TANG Ji-Lin, jltang@ciac.ac.cn
  • Received Date: 24 February 2023
    Revised Date: 10 April 2023

    Fund Project: Supported by the Science and Technology Development Plan of Jilin Province, China (No. 20200801052GH).

  • The evolution of the morphological and mechanical properties of the solid-liquid interface of electrode materials during the electrochemical process is often directly related to the changes in the properties of the materials, and it is attracting more and more attention. Atomic force microscopy (AFM) is an imaging tool that acquires the surface morphology of a sample by monitoring the interaction force between the probe and the sample. It is also an essential platform for the in situ investigation of the morphological evolution and surface mechanical properties changes, benefiting from the high resolution and insitu operation under fluid. In recent years, electrode materials related to batteries, supercapacitors and electrocatalysis have become a hot area of electrochemical study. Meanwhile, the characterization of the evolution of material morphological and mechanical properties in situ using AFM has played a crucial role in the study of the structure-function relationship of electrode materials, providing new ideas for the development and optimization of new materials for electrodes. In this review, we summarized the research progress on the in situ AFM in various types of batteries, supercapacitors, and electrocatalytic electrodes.
  • 加载中
    1. [1]

      YANG Y, PELTIER C R, ZENG R, SCHIMMENTI R, LI Q, HUANG X, YAN Z, POTSI G, SELHORST R, LU X, XU W, TADER M, SOUDACKOV A V, ZHANG H, KRUMOV M, MURRAY E, XU P, HITT J, XU L, KO H Y, ERNST B G, BUNDSCHU C, LUO A, MARKOVICH D, HU M, HE C, WANG H, FANG J, DISTASIO JR. R A, KOURKOUTIS L F, SINGER A, NOONAN K J T, XIAO L, ZHUANG L, PIVOVAR B S, ZELENAY P, HERRERO E, FELIU J M, SUNTIVICH J, GIANNELIS E P, HAMMES-SCHIFFER S, ARIAS T, MAVRIKAKIS M, MALLOUK T E, BROCK J D, MULLER D A, DISALVO F J, COATES G W, ABRUÑA H D. Chem. Rev., 2022, 122(6):6117-6321.

    2. [2]

      SIMON P, GOGOTSI Y. Nat. Mater, 2008, 7(11):845-854.

    3. [3]

      FAN E, LI L, WANG Z, LIN J, HUANG Y, YAO Y, CHEN R, WU F. Chem. Rev., 2020, 120(14):7020-7063.

    4. [4]

      LI X, WANG S, LI L, SUN Y, XIE Y. J. Am. Chem. Soc., 2020, 142(21):9567-9581.

    5. [5]

      YANG S, MIN X, FAN H, XIAO J, LIU Y, MI R, WU X, HUANG Z, XI K, FANG M. J. Mater. Chem. A, 2022, 10(35):17917-17947.

    6. [6]

      BINNIG G, QUATE C F, GERBER C. Phys. Rev. Lett., 1986, 56(9):930-933.

    7. [7]

      XU K, SUN W, SHAO Y, WEI F, ZHANG X, WANG W, LI P. Nanotechnol. Rev., 2018, 7(6):605-621.

    8. [8]

      LIANG Y, PFISTERER J H K, MCLAUGHLIN D, CSOKLICH C, SEIDL L, BANDARENKA A S, SCHNEIDER O. Small Methods, 2019, 3(8):1800387.

    9. [9]

      CHEN H, QIN Z, HE M, LIU Y, WU Z. Materials, 2020, 13(3):668.

    10. [10]

      ZHANG Z, SAID S, SMITH K, JERVIS R, HOWARD C A, SHEARING P R, BRETT D J L, MILLER T S. Adv. Energy Mater., 2021, 11(38):2101518.

    11. [11]

      JENA K K, ALFANTAZI A, MAYYAS A T. Energy Fuels, 2021, 35(22):18257-18284.

    12. [12]

      ZHANG J N, LI Q H, WANG Y, ZHENG J Y, YU X Q, LI H. Energy Storage Mater., 2018, 14:1-7.

    13. [13]

      LI Q, WANG Y, WANG X, SUN X, ZHANG J N, YU X, LI H. ACS Appl. Mater. Interfaces, 2020, 12(2):2319-2326.

    14. [14]

      GUO H J, WANG H X, GUO Y J, LIU G X, WAN J, SONG Y X, YANG X A, JIA F F, WANG F Y, GUO Y G, WEN R, WAN L J. J. Am. Chem. Soc., 2020, 142(49):20752-20762.

    15. [15]

      LU W, ZHANG J, XU J, WU X, CHEN L. ACS Appl. Mater. Interfaces, 2017, 9(22):19313-19318.

    16. [16]

      WANG Z, SUN Z, LI J, SHI Y, SUN C, AN B, CHENG H M, LI F. Chem. Soc. Rev., 2021, 50(5):3178-3210.

    17. [17]

      VERMA P, MAIRE P, NOVÁK P. Electrochim. Acta, 2010, 55(22):6332-6341.

    18. [18]

      SHEN C, HU G, CHEONG L, HUANG S, ZHANG J, WANG D. Small Methods, 2018, 2(2):1700298.

    19. [19]

      ZHU H, RUSSELL J A, FANG Z, BARNES P, LI L, EFAW C M, MUENZER A, MAY J, HAMAL K, CHENG I F, DAVIS P H, DUFEK E J, XIONG H. Small, 2021, 17(52):2105292.

    20. [20]

      BENNING S, CHEN C, EICHEL R A, NOTTEN P H L, HAUSEN F. ACS Appl. Energy Mater., 2019, 2(9):6761-6767.

    21. [21]

      ZHAO R, WANG S, LIU D, LIU Y, LV X, ZENG X, LI B. ACS Appl. Energy Mater., 2021, 4(1):492-499.

    22. [22]

      GALLAGHER K G, GOEBEL S, GRESZLER T, MATHIAS M, OELERICH W, EROGLU D, SRINIVASAN V. Energy Environ. Sci., 2014, 7(5):1555-1563.

    23. [23]

      GIRISHKUMAR G, MCCLOSKEY B, LUNTZ A C, SWANSON S, WILCKE W. J. Phys. Chem. Lett., 2010, 1(14):2193-2203.

    24. [24]

      SHEN Z Z, LANG S Y, SHI Y, MA J M, WEN R, WAN L J. J. Am. Chem. Soc., 2019, 141(17):6900-6905.

    25. [25]

      HONG M, YANG C, WONG R A, NAKAO A, CHOI H C, BYON H R. J. Am. Chem. Soc., 2018, 140(20):6190-6193.

    26. [26]

      CORTES H A, CORTI H R. Ultramicroscopy, 2021, 230:113369.

    27. [27]

      DENG R, WANG M, YU H, LUO S, LI J, CHU F, LIU B, WU F. Energy Environ. Mater., 2022, 5(3):777-799.

    28. [28]

      YIN Y X, XIN S, GUO Y G, WAN L J. Angew. Chem. Int. Ed., 2013, 52(50):13186-13200.

    29. [29]

      LANG S Y, SHI Y, GUO Y G, WANG D, WEN R, WAN L J. Angew. Chem. Int. Ed., 2016, 55(51):15835-15839.

    30. [30]

      LANG S Y, SHI Y, GUO Y G, WEN R, WAN L J. Angew. Chem. Int. Ed., 2017, 56(46):14433-14437.

    31. [31]

      HUANG F, LI X, ZHANG Y, JIE Y, MU X, YANG C, LI W, CHEN Y, LIU Y, WANG S, GE B, CAO R, REN X, YAN P, LI Q, XU D, JIAO S. Adv. Mater., 2022, 34(34):2203710.

    32. [32]

      GUO X, ZHANG Z, LI J, LUO N, CHAI G L, MILLER T S, LAI F, SHEARING P, BRETT D J L, HAN D, WENG Z, HE G, PARKIN I P. ACS Energy Lett., 2021, 6(2):395-403.

    33. [33]

      ZHANG X, YANG J, REN Z, XIE K, YE Q, XU F, LIU X. New Carbon Mater., 2022, 37(2):371-379.

    34. [34]

      POONAM, SHARMA K, ARORA A, TRIPATHI S K. J. Energy Storage, 2019, 21:801-825.

    35. [35]

      TAO X Y, DU J, SUN Y, ZHOU S L, XIA Y, HUANG H, GAN Y P, ZHANG W K, LI X D. Adv. Funct. Mater., 2013, 23(37):4745-4751.

    36. [36]

      BLACK J M, FENG G, FULVIO P F, HILLESHEIM P C, DAI S, GOGOTSI Y, CUMMINGS P T, KALININ S V, BALKE N. Adv. Energy Mater., 2014, 4(3):1300683.

    37. [37]

      CUI X, ZHANG L, ZHANG J, GONG L, GAO M, ZHENG P, XIANG L, WANG W, HU W, XU Q, WEI W, ZENG H. Nano Energy, 2019, 59:102-109.

    38. [38]

      GUAN Y, ZHANG M, QIN J, GUO X, LI Z, ZHANG B, TANG J. J. Phys. Chem. C, 2021, 125(23):12811-12818.

    39. [39]

      GUAN Y, QIN J, GUO X, LI Z, GUO H, ZHANG M, ZHANG B, TANG J. ACS Appl. Energy Mater., 2022, 5(10):12305- 12314.

    40. [40]

      QIAO J, LIU Y, HONG F, ZHANG J. Chem. Soc. Rev., 2014, 43(2):631-675.

    41. [41]

      GROSSE P, GAO D, SCHOLTEN F, SINEV I, MISTRY H, ROLDAN CUENYA B. Angew. Chem. Int. Ed., 2018, 57(21):6192-6197.

    42. [42]

      SIMON G H, KLEY C S, ROLDAN CUENYA B. Angew. Chem. Int. Ed., 2021, 60(5):2561-2568.

    43. [43]

      NESBITT N T, SMITH W A. J. Electrochem. Soc., 2021, 168(4):044505.

    44. [44]

      DEBE M K. Nature, 2012, 486(7401):43-51.

    45. [45]

      DENG X, GALLI F, KOPER M T M. ACS Appl. Energy Mater., 2020, 3:597-602.

    46. [46]

      DENG X, GALLI F, KOPER M T M. J. Am. Chem. Soc., 2018, 140(41):13285-13291.

    47. [47]

      STAMENKOVIC V R, MUN B S, ARENZ M, MAYRHOFER K J J, LUCAS C A, WANG G, ROSS P N, MARKOVIC N M. Nat. Mater., 2007, 6(3):241-247.

    48. [48]

      KHALAKHAN I, VOROKHTA M, VÁCLAVŮ M, ŠMÍD B, LAVKOVÁ J, MATOLÍNOVÁ I, FIALA R, TSUD N, SKÁLA T, MATOLÍN V. Electrochim. Acta, 2016, 211:52-58.

    49. [49]

      KHALAKHAN I, BOGAR M, VOROKHTA M, KÚŠ P, YAKOVLEV Y, DOPITA M, SANDBECK D J S, CHEREVKO S, MATOLÍNOVÁ I, AMENITSCH H. ACS Appl. Mater. Interfaces, 2020, 12(15):17602-17610.

  • 加载中
    1. [1]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    2. [2]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    3. [3]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    4. [4]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    5. [5]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    6. [6]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    7. [7]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    8. [8]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    9. [9]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    13. [13]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    14. [14]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    15. [15]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    16. [16]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    17. [17]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    18. [18]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    19. [19]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    20. [20]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

Metrics
  • PDF Downloads(12)
  • Abstract views(937)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return