Citation: PAN Ting, WU Yuan-Yuan, GUO Guang-Sheng, WANG Xia-Yan. Advances in Microfluidic Chip Structures Based on Hydrodynamics of Efficient Single-Cell Capture[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(6): 934-944. doi: 10.19756/j.issn.0253-3820.231008
-
Single-cell analysis is important for early diagnosis and treatment of major diseases, drug screening, and studying physiopathological processes. Microfluidic chips are capable of precisely controlling the microenvironment of single cells and monitoring their behavior in real-time, and have become a powerful tool for single-cell analysis. Single-cell capture is an important step in single-cell analysis. Till now, several microfluidic-chip-based single-cell capture methods have been reported, among which hydrodynamic microfluidicchip-based single-cell capture has the advantages such as easy operation and high-efficiency of single-cell capture, and thus has received wide attention and has been used by researchers. To comprehensively understand the research status of hydrodynamic microfluidic-chip-based single-cell capture, master the structural design of highefficiency single-cell capture microfluidic chips, and realize the accurate and rapid analysis of single cells, in this paper, the principle of efficient single-cell capture based on hydrodynamics and the structure of microfluidic chips are reviewed. There are three types of structures according to the structural design including micro-well structures, microcolumn structures and bypass channel structures. The optimization process of single-cell capture microfluidic chips is introduced. The materials, structural features, and single-cell capture efficiency of microfluidic chips are summarized, and the advantages and shortcomings of each single-cell capture structure are analyzed. Finally, the development trend of the hydrodynamic-based microfluidic chip single-cell capture method is prospected.
-
Keywords:
- Single-cell,
- Hydrodynamics,
- Microfluidic chip,
- Capture,
- Review
-
-
[1]
SUN J, GAO L, WANG L, SUN X. Talanta, 2021, 234:122671.
-
[2]
LUO X, CHEN J Y, ATAEI M, LEE A. Biosensors, 2022, 12(2):58.
-
[3]
LIU Y, CHEN L, YU J, YE L, HU H, WANG J, WU B. Environ. Sci. Technol., 2022, 56(16):11132-11145.
-
[4]
WANG C, HU W, GUAN L, YANG X, LIANG Q. Chin. Chem. Lett., 2022, 33(6):2883-2892.
-
[5]
ABDULLA A, ZHANG Z, AHMAD K Z, WARDEN A R, LI H, DING X. Biosens. Bioelectron., 2022, 201:113965.
-
[6]
YANG W, QIN Y, WANG Z, YU T, CHEN Y, GE Z. Sens. Actuators, A, 2022, 333:113229.
-
[7]
PARK J, PARK C, SUGITANI Y, FUJII T, KIM S H. Lab Chip, 2022, 22(16):3000-3007.
-
[8]
-
[9]
-
[10]
ZHOU W, YAN Y, GUO Q, JI H, WANG H, XU T, MAKABEL B, PILARSKY C, HE G, YU X, ZHANG J. J. Nanobiotechnol., 2021, 19(1):312.
-
[11]
PANG L, DING J, LIU X X, YUAN H, GE Y, FAN J, FAN S K. TrAC, Trends Anal. Chem., 2020, 129:115940.
-
[12]
FALLAHI H, CHA H, ADELNIA H, DAI Y, TA H T, YADAV S, ZHANG J, NGUYEN N T. Nanoscale Horiz., 2022, 7(4):414-424.
-
[13]
ZHANG H, LU M, XIONG Z, YANG J, TAN M, HUANG L, ZHU X, LU Z, LIANG Z, LIU H. Lab Chip, 2022, 22(10):1951-1961.
-
[14]
LIU Y C, ANSARYAN S, LI X, ARVELO E R, ALTUG H. Biosens. Bioelectron., 2022, 202:113955.
-
[15]
ZHANG W, LI Q, JIA F, HU Z, WEI Z. Anal. Chem., 2021, 93(29):10099-10105.
-
[16]
MURALIDHARAN A, PESCH G R, HUBBE H, REMS L, NOURI-GOUSHKI M, BOUKANY P E. Bioelectrochemistry, 2022, 147:108197.
-
[17]
MURPHY T W, ZHANG Q, NALER L B, MA S, LU C. Analyst, 2017, 143(1):60-80.
-
[18]
WANG H, ENDERS A, PREUSS J A, BAHNEMANN J, HEISTERKAMP A, TORRES-MAPA M L. Sci. Rep., 2021, 11(1):14584.
-
[19]
RICHARD C, DEVENDRAN C, ASHTIANI D, CADARSO V J, NEILD A. Lab Chip, 2022, 22(18):3533-3544.
-
[20]
VALIZADEH A, KHOSROUSHAHI A Y. Anal. Methods, 2015, 7(20):8524-8533.
-
[21]
LUAN Q, MACARANIAG C, ZHOU J, PAPAUTSKY I. Biomicrofluidics, 2020, 14(3):031502.
-
[22]
NARAYANAMURTHY V, NAGARAJAN S, FIRUS KHAN A Y, SAMSURI F, SRIDHAR T M. Anal. Methods, 2017, 9(25):3751-3772.
-
[23]
FENG C, MAO D, LU C, ZHANG Q, LIU X, WU Q, GONG X, CHEN G, ZHU X. Anal. Chem., 2021, 93(2):1110-1119.
-
[24]
ANDERSSON M, JOHANSSON S, BERGMAN H, XIAO L, BEHRENDT L, TENJE M. Lab Chip, 2021, 21(9):1694-1705.
-
[25]
LIU Z, HUANG Y, LIANG W, BAI J, FENG H, FANG Z, TIAN G, ZHU Y, ZHANG H, WANG Y, LIU A, CHEN Y. Lab Chip, 2021, 21(15):2881-2891.
-
[26]
WANG K, ZHOU L, ZHAO S, CHENG Z, QIU S, LU Y, WU Z, WAHAB A H A A, MAO H, ZHAO J. Talanta, 2019, 200:169-176.
-
[27]
TAYEBI M, O'RORKE R, WONG H C, LOW H Y, HAN J, COLLINS D J, AI Y. Small, 2020, 16(17):2000462.
-
[28]
SZÉLES E, NAGY K, ÁBRAHÁM Á, KOVÁCS S, PODMANICZKI A, NAGY V, KOVÁCS L, GALAJDA P, TÓTH S Z. Cells, 2022, 11(2):285.
-
[29]
KHAJVAND T, HUANG P, LI L, ZHANG M, ZHU F, XU X, HUANG M, YANG C, LU Y, ZHU Z. Lab Chip, 2021, 21(24):4823-4830.
-
[30]
GRIGOREV G V, NIKITIN N O, HVATOV A, KALYUZHNAYA A V, LEBEDEV A V, WANG X, QIAN X, MAKSIMOV G V, LIN L. Micromachines, 2022, 13(3):367.
-
[31]
CHEN Y, ZHOU Z, ZHU S, NI Z, XIANG N. Microchem. J., 2022, 177:107284.
-
[32]
TANG H, NIU J, PAN X, JIN H, LIN S, CUI D. J. Chromatogr. A, 2022, 1679:463384.
-
[33]
GILLAMS R J, CALERO V, FERNANDEZ-MATEO R, MORGAN H. Lab Chip, 2022, 22(20):3869-3876.
-
[34]
VARMAZYARI V, GHAFOORIFARD H, HABIBIYAN H, EBRAHIMI M, GHAFOURI-FARD S. J. Mol. Liquids, 2022, 349:118192.
-
[35]
AU S H, EDD J, STODDARD A E, WONG K H K, FACHIN F, MAHESWARAN S, HABER D A, STOTT S L, KAPUR R, TONER M. Sci. Rep., 2017, 7(1):2433.
-
[36]
DAVIS J A. Microfluidic Separation of Blood Components through Deterministic Lateral Displacement. Princeton University, 2008.
-
[37]
AKBARNATAJ K, MALEKI S, REZAEIAN M, HAKI M, SHAMLOO A. Talanta, 2023, 254:124125.
-
[38]
SHIRINY A, BAYAREH M. Chem. Eng. Sci., 2021, 229:116102.
-
[39]
AYASH A A. Chem. Eng. Sci., 2023, 265:118235.
-
[40]
ASMOLOV E S. J. Fluid Mech., 1999, 381:63-87.
-
[41]
MARTEL J M, TONER M. Annu. Rev. Biomed. Eng., 2014, 16(1):371-396.
-
[42]
YAO X Y, LIU Y, CHU Z Y, JIN W Q. Chin. J. Chem. Eng., 2022, 49:1-20.
-
[43]
LI H, LI J, ZHANG Z, GUO Z, ZHANG C, WANG Z, GUO Q, LI C, LI C, YAO J, ZHENG A, XU J, GAO Q, ZHANG W, ZHOU L. Microsyst. Nanoeng., 2022, 8(1):23.
-
[44]
SUN N, LI X, WANG Z, LI Y, PEI R. Biosens. Bioelectron., 2018, 102:157-163.
-
[45]
JEN C P, HSIAO J H, MASLOV N A. Sensors, 2012, 12(1):347-358.
-
[46]
AI X, WU Y, LU W, ZHANG X, ZHAO L, TU P, WANG K W, JIANG Y. Adv. Sci., 2020, 7(11):2000111.
-
[47]
LIN C H, HSIAO Y H, CHANG H C, YEH C F, HE C K, SALM E M, CHEN C, CHIU I M, HSU C H. Lab Chip, 2015, 15(14):2928-2938.
-
[48]
LIPP C, UNING K, COTTET J, MIGLIOZZI D, BERTSCH A, RENAUD P. Lab Chip, 2021, 21(19):3686-3694.
-
[49]
WU Y, ZHAO L, CHANG Y, ZHAO L, GUO G, WANG X. Chin. Chem. Lett., 2021, 32(11):3446-3449.
-
[50]
OSADA K, HOSOKAWA M, YOSHINO T, TANAKA T. Analyst, 2014, 139(2):425-430.
-
[51]
WANG C, LIU W, WEI Q, REN L, TAN M, YU Y. Biomicrofluidics, 2018, 12(3):034103.
-
[52]
DI CARLO D, WU L Y, LEE L P. Lab Chip, 2006, 6(11):1445-1449.
-
[53]
CHEN Y, AUSTIN R H, STURM J C. Biomicrofluidics, 2017, 11(5):054107.
-
[54]
YESILKOY F, UENO R, DESBIOLLES B X E, GRISI M, SAKAI Y, KIM B J, BRUGGER J. Biomicrofluidics, 2016, 10(1):014120.
-
[55]
CHEN H, SUN J, WOLVETANG E, COOPER-WHITE J. Lab Chip, 2015, 15(4):1072-1083.
-
[56]
ZHU J, WANG Y, CHEN P, SU H, DU W, LIU B F. Sens. Actuators, B, 2019, 283:685-692.
-
[57]
GANGULY R, LEE B, KANG S, KIM Y S, JEONG S G, KIM J S, PARK S Y, YOHEI Y, LEE C S. Biotechnol. Bioprocess Eng., 2021, 26(2):179-187.
-
[58]
KOBEL S, VALERO A, LATT J, RENAUD P, LUTOLF M. Lab Chip, 2010, 10(7):857-863.
-
[59]
SAUZADE M, BROUZES E. Lab Chip, 2017, 17(13):2186-2192.
-
[60]
LI L, WANG H, HUANG L, MICHAEL S A, HUANG W, WU H. Anal. Chem., 2019, 91(24):15908-15914.
-
[61]
SUN X, LI B, LI W, REN X, SU N, LI R, LI J, HUANG Q. Micromachines, 2022, 13(8):1272.
-
[62]
TANG X, LIU X, LI P, LIU F, KOJIMA M, HUANG Q, ARAI T. Anal. Chem., 2020, 92(17):11607-11616.
-
[63]
HE C K, CHEN Y W, WANG S H, HSU C H. Lab Chip, 2019, 19(8):1370-1377.
-
[64]
CHUNG K, RIVET C A, KEMP M L, LU H. Anal. Chem., 2011, 83(18):7044-7052.
-
[65]
LIU Y, REN D, LING X, LIANG W, LI J, YOU Z, YALIKUN Y, TANAKA Y. Sensors, 2018, 18(11):3672.
-
[1]
-
-
[1]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[2]
Peng GENG , Guangcan XIANG , Wen ZHANG , Haichuang LAN , Shuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155
-
[3]
Zhaoxin LI , Ruibo WEI , Min ZHANG , Zefeng WANG , Jing ZHENG , Jianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235
-
[4]
Shuyu Liu , Xiaomin Sun , Bohan Song , Gaofeng Zeng , Bingbing Du , Chongshen Guo , Cong Wang , Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113
-
[5]
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
-
[6]
Shipeng WANG , Shangyu XIE , Luxian LIANG , Xuehong WANG , Jie WEI , Deqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094
-
[7]
Di WU , Ruimeng SHI , Zhaoyang WANG , Yuehua SHI , Fan YANG , Leyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135
-
[8]
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
-
[9]
Xinyu ZENG , Guhua TANG , Jianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374
-
[10]
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
-
[11]
Qin Tu , Anju Tao , Tongtong Ma , Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062
-
[12]
Zhibei Qu , Changxin Wang , Lei Li , Jiaze Li , Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039
-
[13]
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
-
[14]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[15]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[16]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[17]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[18]
Jiahui CHEN , Tingting ZHENG , Xiuyun ZHANG , Wei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106
-
[19]
Yongmei Chen , Lidan Zhang , Shunlai Li , Chunting Zhang , Meng Cui , Qinghong Xu , Lan Jin , Chunchuang Li , Zhi Lv . Development of a National First-Class Course of “University Chemistry Experiment” Based on MOOCs. University Chemistry, 2024, 39(7): 8-12. doi: 10.3866/PKU.DXHX202404017
-
[20]
Fan Yu , Aihua Li , Yun Liu , Tianrong Zhu , Liang Wang , Junhui Xu , Yazhen Wang . Exploration and Practice in Developing a Premier Course in Inorganic and Analytical Chemistry. University Chemistry, 2024, 39(8): 36-43. doi: 10.3866/PKU.DXHX202312037
-
[1]
Metrics
- PDF Downloads(36)
- Abstract views(1938)
- HTML views(180)