Citation: PAN Ting,  WU Yuan-Yuan,  GUO Guang-Sheng,  WANG Xia-Yan. Advances in Microfluidic Chip Structures Based on Hydrodynamics of Efficient Single-Cell Capture[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(6): 934-944. doi: 10.19756/j.issn.0253-3820.231008 shu

Advances in Microfluidic Chip Structures Based on Hydrodynamics of Efficient Single-Cell Capture

  • Corresponding author: WU Yuan-Yuan,  WANG Xia-Yan, 
  • Received Date: 8 January 2023
    Revised Date: 22 February 2023

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 22127805, 22176230), the Beijing Outstanding Young Scientist Program (No. BJJWZYJH01201910005017) and the China Postdoctoral Science Foundation (No. 2022M710277).

  • Single-cell analysis is important for early diagnosis and treatment of major diseases, drug screening, and studying physiopathological processes. Microfluidic chips are capable of precisely controlling the microenvironment of single cells and monitoring their behavior in real-time, and have become a powerful tool for single-cell analysis. Single-cell capture is an important step in single-cell analysis. Till now, several microfluidic-chip-based single-cell capture methods have been reported, among which hydrodynamic microfluidicchip-based single-cell capture has the advantages such as easy operation and high-efficiency of single-cell capture, and thus has received wide attention and has been used by researchers. To comprehensively understand the research status of hydrodynamic microfluidic-chip-based single-cell capture, master the structural design of highefficiency single-cell capture microfluidic chips, and realize the accurate and rapid analysis of single cells, in this paper, the principle of efficient single-cell capture based on hydrodynamics and the structure of microfluidic chips are reviewed. There are three types of structures according to the structural design including micro-well structures, microcolumn structures and bypass channel structures. The optimization process of single-cell capture microfluidic chips is introduced. The materials, structural features, and single-cell capture efficiency of microfluidic chips are summarized, and the advantages and shortcomings of each single-cell capture structure are analyzed. Finally, the development trend of the hydrodynamic-based microfluidic chip single-cell capture method is prospected.
  • 加载中
    1. [1]

      SUN J, GAO L, WANG L, SUN X. Talanta, 2021, 234:122671.

    2. [2]

      LUO X, CHEN J Y, ATAEI M, LEE A. Biosensors, 2022, 12(2):58.

    3. [3]

      LIU Y, CHEN L, YU J, YE L, HU H, WANG J, WU B. Environ. Sci. Technol., 2022, 56(16):11132-11145.

    4. [4]

      WANG C, HU W, GUAN L, YANG X, LIANG Q. Chin. Chem. Lett., 2022, 33(6):2883-2892.

    5. [5]

      ABDULLA A, ZHANG Z, AHMAD K Z, WARDEN A R, LI H, DING X. Biosens. Bioelectron., 2022, 201:113965.

    6. [6]

      YANG W, QIN Y, WANG Z, YU T, CHEN Y, GE Z. Sens. Actuators, A, 2022, 333:113229.

    7. [7]

      PARK J, PARK C, SUGITANI Y, FUJII T, KIM S H. Lab Chip, 2022, 22(16):3000-3007.

    8. [8]

    9. [9]

    10. [10]

      ZHOU W, YAN Y, GUO Q, JI H, WANG H, XU T, MAKABEL B, PILARSKY C, HE G, YU X, ZHANG J. J. Nanobiotechnol., 2021, 19(1):312.

    11. [11]

      PANG L, DING J, LIU X X, YUAN H, GE Y, FAN J, FAN S K. TrAC, Trends Anal. Chem., 2020, 129:115940.

    12. [12]

      FALLAHI H, CHA H, ADELNIA H, DAI Y, TA H T, YADAV S, ZHANG J, NGUYEN N T. Nanoscale Horiz., 2022, 7(4):414-424.

    13. [13]

      ZHANG H, LU M, XIONG Z, YANG J, TAN M, HUANG L, ZHU X, LU Z, LIANG Z, LIU H. Lab Chip, 2022, 22(10):1951-1961.

    14. [14]

      LIU Y C, ANSARYAN S, LI X, ARVELO E R, ALTUG H. Biosens. Bioelectron., 2022, 202:113955.

    15. [15]

      ZHANG W, LI Q, JIA F, HU Z, WEI Z. Anal. Chem., 2021, 93(29):10099-10105.

    16. [16]

      MURALIDHARAN A, PESCH G R, HUBBE H, REMS L, NOURI-GOUSHKI M, BOUKANY P E. Bioelectrochemistry, 2022, 147:108197.

    17. [17]

      MURPHY T W, ZHANG Q, NALER L B, MA S, LU C. Analyst, 2017, 143(1):60-80.

    18. [18]

      WANG H, ENDERS A, PREUSS J A, BAHNEMANN J, HEISTERKAMP A, TORRES-MAPA M L. Sci. Rep., 2021, 11(1):14584.

    19. [19]

      RICHARD C, DEVENDRAN C, ASHTIANI D, CADARSO V J, NEILD A. Lab Chip, 2022, 22(18):3533-3544.

    20. [20]

      VALIZADEH A, KHOSROUSHAHI A Y. Anal. Methods, 2015, 7(20):8524-8533.

    21. [21]

      LUAN Q, MACARANIAG C, ZHOU J, PAPAUTSKY I. Biomicrofluidics, 2020, 14(3):031502.

    22. [22]

      NARAYANAMURTHY V, NAGARAJAN S, FIRUS KHAN A Y, SAMSURI F, SRIDHAR T M. Anal. Methods, 2017, 9(25):3751-3772.

    23. [23]

      FENG C, MAO D, LU C, ZHANG Q, LIU X, WU Q, GONG X, CHEN G, ZHU X. Anal. Chem., 2021, 93(2):1110-1119.

    24. [24]

      ANDERSSON M, JOHANSSON S, BERGMAN H, XIAO L, BEHRENDT L, TENJE M. Lab Chip, 2021, 21(9):1694-1705.

    25. [25]

      LIU Z, HUANG Y, LIANG W, BAI J, FENG H, FANG Z, TIAN G, ZHU Y, ZHANG H, WANG Y, LIU A, CHEN Y. Lab Chip, 2021, 21(15):2881-2891.

    26. [26]

      WANG K, ZHOU L, ZHAO S, CHENG Z, QIU S, LU Y, WU Z, WAHAB A H A A, MAO H, ZHAO J. Talanta, 2019, 200:169-176.

    27. [27]

      TAYEBI M, O'RORKE R, WONG H C, LOW H Y, HAN J, COLLINS D J, AI Y. Small, 2020, 16(17):2000462.

    28. [28]

      SZÉLES E, NAGY K, ÁBRAHÁM Á, KOVÁCS S, PODMANICZKI A, NAGY V, KOVÁCS L, GALAJDA P, TÓTH S Z. Cells, 2022, 11(2):285.

    29. [29]

      KHAJVAND T, HUANG P, LI L, ZHANG M, ZHU F, XU X, HUANG M, YANG C, LU Y, ZHU Z. Lab Chip, 2021, 21(24):4823-4830.

    30. [30]

      GRIGOREV G V, NIKITIN N O, HVATOV A, KALYUZHNAYA A V, LEBEDEV A V, WANG X, QIAN X, MAKSIMOV G V, LIN L. Micromachines, 2022, 13(3):367.

    31. [31]

      CHEN Y, ZHOU Z, ZHU S, NI Z, XIANG N. Microchem. J., 2022, 177:107284.

    32. [32]

      TANG H, NIU J, PAN X, JIN H, LIN S, CUI D. J. Chromatogr. A, 2022, 1679:463384.

    33. [33]

      GILLAMS R J, CALERO V, FERNANDEZ-MATEO R, MORGAN H. Lab Chip, 2022, 22(20):3869-3876.

    34. [34]

      VARMAZYARI V, GHAFOORIFARD H, HABIBIYAN H, EBRAHIMI M, GHAFOURI-FARD S. J. Mol. Liquids, 2022, 349:118192.

    35. [35]

      AU S H, EDD J, STODDARD A E, WONG K H K, FACHIN F, MAHESWARAN S, HABER D A, STOTT S L, KAPUR R, TONER M. Sci. Rep., 2017, 7(1):2433.

    36. [36]

      DAVIS J A. Microfluidic Separation of Blood Components through Deterministic Lateral Displacement. Princeton University, 2008.

    37. [37]

      AKBARNATAJ K, MALEKI S, REZAEIAN M, HAKI M, SHAMLOO A. Talanta, 2023, 254:124125.

    38. [38]

      SHIRINY A, BAYAREH M. Chem. Eng. Sci., 2021, 229:116102.

    39. [39]

      AYASH A A. Chem. Eng. Sci., 2023, 265:118235.

    40. [40]

      ASMOLOV E S. J. Fluid Mech., 1999, 381:63-87.

    41. [41]

      MARTEL J M, TONER M. Annu. Rev. Biomed. Eng., 2014, 16(1):371-396.

    42. [42]

      YAO X Y, LIU Y, CHU Z Y, JIN W Q. Chin. J. Chem. Eng., 2022, 49:1-20.

    43. [43]

      LI H, LI J, ZHANG Z, GUO Z, ZHANG C, WANG Z, GUO Q, LI C, LI C, YAO J, ZHENG A, XU J, GAO Q, ZHANG W, ZHOU L. Microsyst. Nanoeng., 2022, 8(1):23.

    44. [44]

      SUN N, LI X, WANG Z, LI Y, PEI R. Biosens. Bioelectron., 2018, 102:157-163.

    45. [45]

      JEN C P, HSIAO J H, MASLOV N A. Sensors, 2012, 12(1):347-358.

    46. [46]

      AI X, WU Y, LU W, ZHANG X, ZHAO L, TU P, WANG K W, JIANG Y. Adv. Sci., 2020, 7(11):2000111.

    47. [47]

      LIN C H, HSIAO Y H, CHANG H C, YEH C F, HE C K, SALM E M, CHEN C, CHIU I M, HSU C H. Lab Chip, 2015, 15(14):2928-2938.

    48. [48]

      LIPP C, UNING K, COTTET J, MIGLIOZZI D, BERTSCH A, RENAUD P. Lab Chip, 2021, 21(19):3686-3694.

    49. [49]

      WU Y, ZHAO L, CHANG Y, ZHAO L, GUO G, WANG X. Chin. Chem. Lett., 2021, 32(11):3446-3449.

    50. [50]

      OSADA K, HOSOKAWA M, YOSHINO T, TANAKA T. Analyst, 2014, 139(2):425-430.

    51. [51]

      WANG C, LIU W, WEI Q, REN L, TAN M, YU Y. Biomicrofluidics, 2018, 12(3):034103.

    52. [52]

      DI CARLO D, WU L Y, LEE L P. Lab Chip, 2006, 6(11):1445-1449.

    53. [53]

      CHEN Y, AUSTIN R H, STURM J C. Biomicrofluidics, 2017, 11(5):054107.

    54. [54]

      YESILKOY F, UENO R, DESBIOLLES B X E, GRISI M, SAKAI Y, KIM B J, BRUGGER J. Biomicrofluidics, 2016, 10(1):014120.

    55. [55]

      CHEN H, SUN J, WOLVETANG E, COOPER-WHITE J. Lab Chip, 2015, 15(4):1072-1083.

    56. [56]

      ZHU J, WANG Y, CHEN P, SU H, DU W, LIU B F. Sens. Actuators, B, 2019, 283:685-692.

    57. [57]

      GANGULY R, LEE B, KANG S, KIM Y S, JEONG S G, KIM J S, PARK S Y, YOHEI Y, LEE C S. Biotechnol. Bioprocess Eng., 2021, 26(2):179-187.

    58. [58]

      KOBEL S, VALERO A, LATT J, RENAUD P, LUTOLF M. Lab Chip, 2010, 10(7):857-863.

    59. [59]

      SAUZADE M, BROUZES E. Lab Chip, 2017, 17(13):2186-2192.

    60. [60]

      LI L, WANG H, HUANG L, MICHAEL S A, HUANG W, WU H. Anal. Chem., 2019, 91(24):15908-15914.

    61. [61]

      SUN X, LI B, LI W, REN X, SU N, LI R, LI J, HUANG Q. Micromachines, 2022, 13(8):1272.

    62. [62]

      TANG X, LIU X, LI P, LIU F, KOJIMA M, HUANG Q, ARAI T. Anal. Chem., 2020, 92(17):11607-11616.

    63. [63]

      HE C K, CHEN Y W, WANG S H, HSU C H. Lab Chip, 2019, 19(8):1370-1377.

    64. [64]

      CHUNG K, RIVET C A, KEMP M L, LU H. Anal. Chem., 2011, 83(18):7044-7052.

    65. [65]

      LIU Y, REN D, LING X, LIANG W, LI J, YOU Z, YALIKUN Y, TANAKA Y. Sensors, 2018, 18(11):3672.

  • 加载中
    1. [1]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    2. [2]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    3. [3]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    4. [4]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    5. [5]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    6. [6]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    7. [7]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    8. [8]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    9. [9]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    10. [10]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    11. [11]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    12. [12]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    13. [13]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    14. [14]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    15. [15]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    16. [16]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    17. [17]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    18. [18]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    19. [19]

      Yongmei Chen Lidan Zhang Shunlai Li Chunting Zhang Meng Cui Qinghong Xu Lan Jin Chunchuang Li Zhi Lv . Development of a National First-Class Course of “University Chemistry Experiment” Based on MOOCs. University Chemistry, 2024, 39(7): 8-12. doi: 10.3866/PKU.DXHX202404017

    20. [20]

      Fan Yu Aihua Li Yun Liu Tianrong Zhu Liang Wang Junhui Xu Yazhen Wang . Exploration and Practice in Developing a Premier Course in Inorganic and Analytical Chemistry. University Chemistry, 2024, 39(8): 36-43. doi: 10.3866/PKU.DXHX202312037

Metrics
  • PDF Downloads(36)
  • Abstract views(1937)
  • HTML views(180)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return