Citation: DENG Bi-Tao,  XU Fei,  CAO Hui,  YUAN Min,  YU Jin-Song,  YIN Feng-Qin,  WU Xiu-Xiu,  YE Tai. Construction of Nuclease-Powered DNA Walker and Its Application in Food Safety[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(6): 911-921. doi: 10.19756/j.issn.0253-3820.221589 shu

Construction of Nuclease-Powered DNA Walker and Its Application in Food Safety

  • Corresponding author: YE Tai, taiye@usst.edu.cn
  • Received Date: 30 November 2022
    Revised Date: 4 March 2023

    Fund Project: Supported by the National Natural Science Foundation of China (No. 32172303) and the Shanghai Rising-Star Program (No. 22QA1406500).

  • The rapid and highly sensitive detection of contaminants in foods is an important strategy to prevent food safety incidents. DNA Walker is a dynamic nano-machine with a programmable structure and function. It can be moved along the designed track interface driven by free energy to carry out continuous mechanical displacement. The nuclease powered DNA walker has excellent signal amplification capabilities and reaction kinetics, and the DNA walker-based biosensor combined with aptamer has been widely used in food safety detection. This review summarized the construction strategies of nuclease powered DNA walker and its application in food safety testing, and its further prospects were also discussed.
  • 加载中
    1. [1]

      DAWADI S, THAPA R, MODI B, BHANDARI S, TIMILSINA A P, YADAV R P, ARYAL B, GAUTAM S, SHARMA P, THAPA B B, ARYAL N, ARYAL S, REGMI B P, PARAJULI N. Processes, 2021, 9(9):1500.

    2. [2]

      GLINKA M, WOJNOWSKI W, WASIK A. TrAC, Trends Anal. Chem., 2020, 131:116034.

    3. [3]

      LIU R B, ZHANG F Y, SANG Y X, KATOUZIAN I, JAFARI S M, WANG X H, LI W J, WANG J N, MOHAMMADI Z. Trends Food Sci. Technol., 2022, 123:355-375.

    4. [4]

      YU H, ALKHAMIS O, CANOURA J, LIU Y, XIAO Y. Angew. Chem. Int. Ed., 2021, 60(31):16800-16823.

    5. [5]

      XIA X H, YANG H, CAO J J, ZHANG J Q, HE Q, DENG R J. TrAC, Trends Anal. Chem., 2022, 153:116641.

    6. [6]

      YAN M, BAI W, ZHU C, HUANG Y, YAN J, CHEN A. Biosens. Bioelectron., 2016, 77:613-623.

    7. [7]

      MUNZAR J D, NG A, JUNCKER D. Chem. Soc. Rev., 2019, 48(5):1390-1419.

    8. [8]

      PAN J, LI F, CHA T G, CHEN H, CHOI J H. Curr. Opin. Biotechnol., 2015, 34:56-64.

    9. [9]

      BATH J, GREEN S J, TURBERFIELD A J. Angew. Chem. Int. Ed., 2005, 44(28):4358-4361.

    10. [10]

      SHERMAN W B, SEEMAN N C. Nano Lett., 2004, 4(7):1203-1207.

    11. [11]

      CHEN Y, MENG X, LU H, DONG H. Anal. Chim. Acta, 2022, 1209:339339.

    12. [12]

      YE T, LU J Q, YUAN M, CAO H, YIN F Q, WU X X, HAO L L, XU F. Sens. Actuators, B, 2021, 340:129939.

    13. [13]

    14. [14]

      CUI Y, WANG H, LIU S, WANG Y, HUANG J. Analyst, 2020, 145(2):445-452.

    15. [15]

      LI Z Y, LI D Y, HUANG L, HU R, YANG T, YANG Y H. Anal. Chim. Acta, 2022, 1214:339964.

    16. [16]

      YI Y, HAN Y, CHENG X, ZHANG Z, SUN Y, ZHANG K, XU J J. Anal. Chem., 2022, 94(49):17205-17211.

    17. [17]

      CHEN J, LUO Z W, SUN C J, HUANG Z J, ZHOU C, YIN S, DUAN Y X, LI Y X. TrAC, Trends Anal. Chem., 2019, 120:115626.

    18. [18]

      SKUGOR M, VALERO J, MURAYAMA K, CENTOLA M, ASANUMA H, FAMULOK M. Angew. Chem. Int. Ed., 2019, 58(21):6948-6951.

    19. [19]

      LI Y, LUO Z, ZHANG C, SUN R, ZHOU C, SUN C. TrAC, Trends Anal. Chem., 2021, 134:116142.

    20. [20]

      SONG L, ZHUGE Y, ZUO X, LI M, WANG F. Adv. Sci. (Weinh), 2022, 9(18):e2200327.

    21. [21]

      XU M, TANG D. Anal. Chim. Acta, 2021, 1171:338523.

    22. [22]

      YANG P, ZHOU R, KONG C, FAN L, DONG C, CHEN J, HOU X, LI F. ACS Nano, 2021, 15(10):16870-16877.

    23. [23]

      LI D, LUO Z, AN H, YANG E, WU M, HUANG Z, DUAN Y. Talanta, 2020, 217:121056.

    24. [24]

      QU X, ZHU D, YAO G, SU S, CHAO J, LIU H, ZUO X, WANG L, SHI J, WANG L, HUANG W, PEI H, FAN C. Angew. Chem. Int. Ed., 2017, 56(7):1855-1858.

    25. [25]

      HSIAO J C, BURYSKA T, KIM E, HOWES P D, DEMELLO A J. Nanoscale, 2021, 13(9):4956-4970.

    26. [26]

      WANG Y, HU N, LIU C, NIE C, HE M, ZHANG J, YU Q, ZHAO C, CHEN T, CHU X. Nanoscale, 2020, 12(3):1673-1679.

    27. [27]

      HUANG J, ZHU L, JU H, LEI J. Anal. Chem., 2019, 91(11):6981-6985.

    28. [28]

      WANG C, LIU R, HU J, LV Y. Chem. Eur. J., 2019, 25(53):12270-12274.

    29. [29]

      YANG X, TANG Y, MASON S D, CHEN J, LI F. ACS Nano, 2016, 10(2):2324-2330.

    30. [30]

      CHENG X, BAO Y, LIANG S, LI B, LIU Y, WU H, MA X, CHU Y, SHAO Y, MENG Q, ZHOU G, SONG Q, ZOU B. Anal. Chem., 2021, 93(27):9593-9601.

    31. [31]

      JI Y, ZHANG L, ZHU L, LEI J, WU J, JU H. Biosens. Bioelectron., 2017, 96:201-205.

    32. [32]

      YANG P, LI Y, MASON S D, CHEN F, CHEN J, ZHOU R, LIU J, HOU X, LI F. Anal. Chem., 2020, 92(4):3220-3227.

    33. [33]

      YANG L, FANG J, LI J, OU X, ZHANG L, WANG Y, WENG Z, XIE G. Anal. Chim. Acta, 2021, 1143:157-165.

    34. [34]

      MASON S D, WANG G A, YANG P, LI Y, LI F. ACS Nano, 2019, 13(7):8106-8113.

    35. [35]

      WEI Y P, CHEN J S, LIU X P, MAO C J, JIN B K. ACS Appl. Mater. Interfaces, 2022, 14(20):23726-23733.

    36. [36]

      LV H, CHEN A, CHENG W, KONG L, ZHAO M, DING S, JU H, CHENG W. Anal. Chem., 2020, 92(23):15624-15631.

    37. [37]

      ZHANG J, YANG H, LIU W, WEN H, HE F. Anal. Chim. Acta, 2022, 1190:339266.

    38. [38]

      WANG L, ZENG H, YANG X, CHEN C, OU S. Microchim. Acta, 2021, 188(6):214.

    39. [39]

      MIAO P, TANG Y. Chem. Commun., 2020, 56(37):4982-4985.

    40. [40]

      YEHL K, MUGLER A, VIVEK S, LIU Y, ZHANG Y, FAN M, WEEKS E R, SALAITA K. Nat. Nanotechnol., 2016, 11(2):184-190.

    41. [41]

      BAZRAFSHAN A, KYRIAZI M E, HOLT B A, DENG W, PIRANEJ S, SU H, HU Y, EL-SAGHEER A H, BROWN T, KWONG G A, KANARAS A G, SALAITA K. ACS Nano, 2021, 15(5):8427-8438.

    42. [42]

      WU N, WANG K, WANG Y T, CHEN M L, CHEN X W, YANG T, WANG J H. Anal. Chem., 2020, 92(16):11111-11118.

    43. [43]

      ZHANG R F, WANG Y, QU X N, LI S S, ZHAO Y H, LIU S, HUANG J D. Sens. Actuators, B, 2019, 297:126771.

    44. [44]

      YE T, ZHANG Z, YUAN M, CAO H, YIN F, WU X, XU F. J. Agric. Food Chem., 2020, 68(9):2826-2831.

    45. [45]

      JIN L, QIAO J, CHEN J, XU N, WU M. Talanta, 2020, 208:120404.

    46. [46]

      JIANG L, QU X, SUN W, ZHANG M, WANG Y, WANG Y, ZHAO Y, ZHANG F, LENG Y, LIU S, YU J, HUANG J. Analyst, 2021, 146(17):5413-5420.

    47. [47]

      QU X, WANG J, ZHANG R, ZHAO Y, LI S, WANG Y, LIU S, HUANG J, YU J. Microchim. Acta, 2020, 187(3):193.

    48. [48]

      WANG X, XUAN T, HUANG W, LI X, LAI G. Anal. Chim. Acta, 2022, 1208:339835.

    49. [49]

      YE T, ZHANG Z, LU J, YUAN M, CAO H, YIN F, WU X, XU F. Nanoscale, 2020, 12(40):20883-20889.

    50. [50]

      JIANG C M, LAN L Y, YAO Y, ZHAO F N, PING J F. TrAC, Trends Anal. Chem., 2018, 102:236-249.

    51. [51]

      WEI M, WANG C, XU E, CHEN J, XU X, WEI W, LIU S. Food Chem., 2019, 282:141-146.

    52. [52]

      WANG Y, SONG W, ZHAO H, MA X, YANG S, QIAO X, SHENG Q, YUE T. Biosens. Bioelectron., 2021, 182:113171.

    53. [53]

      WANG K, HE B S, XIE L L, LI L P, YANG J P, LIU R L, WEI M, JIN H L, REN W J. Sens. Actuators, B, 2021, 349:130767.

    54. [54]

      WANG Q, ZHAO F, YANG Q, WU W. Sens. Actuators, B, 2021, 345:130387.

    55. [55]

      ZHONG X, YANG S S, LIAO N, YUAN R, ZHUO Y. Anal. Chem., 2021, 93(12):5301-5308.

    56. [56]

      TAGHDISI S M, DANESH N M, RAMEZANI M, EMRANI A S, ABNOUS K. ACS Appl. Mater. Interfaces, 2018, 10(15):12504-12509.

    57. [57]

      ZHANG H, YAO S, SHENG R, WANG J, LI H, FU Y, LI J, ZHANG X, ZHAO C. J. Colloid Interface Sci., 2022, 625:257- 263.

    58. [58]

      YANG H, XIAO M, LAI W, WAN Y, LI L, PEI H. Anal. Chem., 2020, 92(7):4990-4995.

    59. [59]

      YAO G, PEI H, LI J, ZHAO Y, ZHU D, ZHANG Y, LIN Y, HUANG Q, FAN C. NPG Asia Mater., 2015, 7(1):e159.

    60. [60]

      LI D, YANG E, LUO Z, XIE Q, DUAN Y. Nanoscale, 2021, 13(4):2492-2501.

    61. [61]

      YANG E, LI D, YIN P, XIE Q, LI Y, LIN Q, DUAN Y. Biosens. Bioelectron., 2021, 172:112758.

    62. [62]

      WEI W, LIN H, HAO T, WANG S, HU Y, GUO Z, LUO X. Biosens. Bioelectron., 2021, 186:113305.

    63. [63]

      ZHAO Y W, WANG Y, YANG R M, ZHANG H, ZHAO Y F, MIAO X M, LU L H. Sens. Actuators, B, 2021, 343:130172.

    64. [64]

      ZHANG B, TIAN P, ZHU H, XIE L, DAI P, HE B. J. Hazard. Mater., 2021, 416:125831.

    65. [65]

      ZHANG Y Q, YAN X S, LIU D Z, JIE G F. Sens. Actuators, B, 2022, 362:131740.

    66. [66]

      ZHAO Q, LU Q, YU Q W, FENG Y Q. J. Agric. Food Chem., 2013, 61(22):5397-5403.

    67. [67]

      ZHANG S, LIU X, QIN J', YANG M, ZHAO H, WANG Y, GUO W, MA Z, KONG W. J. Chromatogr. B, 2017, 1068-1069:233-238.

    68. [68]

      PORTOLES T, SALES C, ABALOS M, SAULO J, ABAD E. Anal. Chim. Acta, 2016, 937:96-105.

    69. [69]

      CHENG R, LIU S, SHI H, ZHAO G. J. Hazard. Mater., 2018, 341:373-380.

    70. [70]

      CHEN M, KUTSANEDZIE F Y H, CHENG W, LI H, CHEN Q. Microchem. J., 2019, 144:296-302.

    71. [71]

      LI M, HE B, YAN H, XIE L, CAO X, JIN H, WEI M, REN W, SUO Z, XU Y. Anal. Chim. Acta, 2022, 1232:340470.

  • 加载中
    1. [1]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    2. [2]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    5. [5]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    6. [6]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    7. [7]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    8. [8]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    9. [9]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    10. [10]

      Simin Fang Hong Wu Sizhe Sheng Lingling Li Yuxi Wang Hongchun Li Jun Jiang . The Food Kingdom Lecture Series: The Science behind Color. University Chemistry, 2024, 39(9): 177-182. doi: 10.12461/PKU.DXHX202402012

    11. [11]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    12. [12]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    13. [13]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    14. [14]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    15. [15]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    16. [16]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    17. [17]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    18. [18]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    19. [19]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    20. [20]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

Metrics
  • PDF Downloads(33)
  • Abstract views(1387)
  • HTML views(172)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return