Citation: REN Lin-Jiao,  XUE Meng-Xiao,  CHEN Qing-Hua,  WEI Ming-Hang,  ZHANG Pei,  QIN Zi-Rui,  YAN Yan-Xia,  JIANG Li-Ying. Label-free Fluorescent Sensor for Detection of Single-stranded Nucleic Acids Based on G-rich Sequence[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(6): 962-971. doi: 10.19756/j.issn.0253-3820.221546 shu

Label-free Fluorescent Sensor for Detection of Single-stranded Nucleic Acids Based on G-rich Sequence

  • Corresponding author: CHEN Qing-Hua,  JIANG Li-Ying, 
  • Received Date: 3 November 2022
    Revised Date: 3 April 2023

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 62073299, 12004348, 61801436), the Project of Central Plains Science and Technology Innovation Leading Talents (No. 224200510026) and the Scientific and Technological Projects in Henan Province, China (Nos. 212102210196, 212102210002, 12102210278, 212102210008).

  • G-rich sequences with specific conformations (e.g. G-quadruplex and G-triplex) can interact with fluorescent dyes to enhance their fluorescence signal intensity, and are widely used for label-free fluorescent biosensing. In this study, two label-free fluorescent sensors based on G-rich sequences were constructed for detection of the gene sequence of β-amyloid protein (Aβ), a marker of Alzheimer's syndrome, using thiosemicarbazone T (ThT) as the fluorescent dye. The experimental results showed that the G-rich sequences were present as G-triplexes when the length of the hairpin stem was 4 base pairs, and the output signal of the G-triplex sensor decreased with increasing concentration of Aβ gene, with a linear detection range of 1-100 nmol/L and a detection limit of 0.3 nmol/L (S/N = 3). When the length of the hairpin stem was 8 base pairs and the base AATT was added at the 5' end, the G-rich signal decreased with the concentration of Aβ gene. The G-rich sequences were mostly present as G-quadruplexes after binding to Aβ gene, and the output signal of the G-quadruplex sensor was enhanced with increasing concentration of Aβ gene, with a linear detection range of 0.1-100 nmol/L and a detection limit of 0.04 nmol/L (S/N = 3). The two sensors were prepared in a similar process but with different detection principles, providing a basis for further research and application of G-rich sequences. It also provided a new idea for the label-free fluorescence detection of single-stranded nucleic acids.
  • 加载中
    1. [1]

      ZHANG N, WANG L, DENG X, LIANG R, SU M, HE C, HU L, SU Y, REN J, YU F, DU L, JIANG S. J. Med. Virol., 2020, 92(4):408-417.

    2. [2]

      LI L, LI S, WU N, WU J, WANG G, ZHAO G, WANG J. ACS Synth. Biol., 2019, 8(10):2228-2237.

    3. [3]

      CHOI J H, LIM J, SHIN M, PAEK S H, CHOI J W. Nano Lett., 2021, 21(1):693-699.

    4. [4]

      YANG C, CHU X, ZENG L, RHOUATI A, ABBAS F, CUI S, LIN D. Biosensors, 2022, 12(6):423.

    5. [5]

      STOBIECKA M, CHAŁUPA A. Chem. Pap., 2015, 69(1):62-76.

    6. [6]

    7. [7]

      XIONG Y, DAI J, ZHANG Y, ZHOU C, YUAN H, XIAO D. Anal. Methods, 2021, 13(21):2391-2395.

    8. [8]

      WANG K, ZHAI F H, HE M Q, WANG J, YU Y L, HE R H. Anal. Bioanal. Chem., 2019, 411(19):4569-4576.

    9. [9]

      MA G, YU Z, ZHOU W, LI Y, FAN L, LI X. J. Phys. Chem. B, 2019, 123(26):5405-5411.

    10. [10]

      SHAHSAVAR K, SHOKRI E, HOSSEINI M. Microchem. J., 2020, 158:105277.

    11. [11]

      LI Z B, ZOU S Y, WU S J, MIAO X M, MA D L. Talanta, 2020, 221:121661.

    12. [12]

      CHEN N, LI J, FENG X, YANG Y, ZHU L, CHEN X, LIU X, LI Y, WANG C, XIA L. Microchim. Acta, 2020, 187(8):432.

    13. [13]

      WANG S, SUN J, ZHAO J, LU S, YANG X. Anal. Chem., 2018, 90(5):3437-3442.

    14. [14]

      LU S, WANG S, ZHAO J, SUN J, YANG X. Anal. Chem., 2017, 89(16):8429-8436.

    15. [15]

      WU Z F, ZHOU H, HE J, LI M, MA X M, XUE J, LI X, FAN X L. Analyst, 2019, 144(17):5201-5206.

    16. [16]

      QIN S, CHEN X, XU Z, LI T, ZHAO S, HU R, ZHU J, LI Y, YANG Y, LIU M. Anal. Bioanal. Chem., 2022, 414(20):6149- 6156.

    17. [17]

      KATAOKA Y, FUJITA H, ENDOH T, SUGIMOTO N, KUWAHARA M. Molecules, 2020, 25(21):4936.

    18. [18]

    19. [19]

      LI Q S, PENG S Z, CHANG Y, YANG C, YANG M J, WANG D D, ZHOU X S, SHAO Y. J. Photochem. Photobio., A, 2022, 432:114071.

    20. [20]

      ANDREEVA D V, TIKHOMIROV A S, SHCHEKOTIKHIN A E. Russ. Chem. Rev., 2021, 90(1):1-38.

    21. [21]

    22. [22]

      VERMA S, RAVICHANDIRAN V, RANJAN N. Biochimie, 2021, 190:111-123.

    23. [23]

      LU S, WANG S, ZHAO J, SUN J, YANG X. Sci. China Chem., 2019, 63(3):404-410.

    24. [24]

      SHEN F, QIAN H, CHENG Y, XIE Y, YU H, YAO W, PEI R, GUO Y, LI H W. Talanta, 2020, 206:120216.

    25. [25]

      ZHONG D, YANG K, WANG Y, YANG X. Talanta, 2019, 175:217-223.

    26. [26]

      HAN D, WEI C. Talanta, 2018, 181:24-31.

    27. [27]

      GUO Y, XU P, HU H, ZHOU X, HU J. Talanta, 2013, 114:138-142.

  • 加载中
    1. [1]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    2. [2]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    3. [3]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    4. [4]

      Rui LIUXinjun ZHOUTao WANG . Photocatalytic degradation performance of tetracycline by MOF-74-Mn/g-C3N4 Z-type heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1796-1804. doi: 10.11862/CJIC.20250033

    5. [5]

      Qunlong ZhangJingyi KangJingwen WangTiancheng TanZhaoyong Lu . Divergent total synthesis of sesquiterpene (hydro)quinone meroterpenoids dysideanones A and E–G. Chinese Chemical Letters, 2025, 36(3): 109915-. doi: 10.1016/j.cclet.2024.109915

    6. [6]

      Chen Hu Yu Wu Lianqing Chen Tao Huang Chunya Li Lin Li Bingguang Zhang Peng Mei . 基于“三位一体四融合”策略的化学实验室安全课程创新与探索. University Chemistry, 2025, 40(8): 25-32. doi: 10.12461/PKU.DXHX202410088

    7. [7]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    8. [8]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    9. [9]

      Yang LiuLeilei ZhangKaixuan LiuLing-Ling WuHai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759

    10. [10]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    11. [11]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    12. [12]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    13. [13]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    15. [15]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    16. [16]

      Zhexue Lu Ping Wu Huihui Li Libai Wen . 四“味”一体的无机及分析化学课程思政. University Chemistry, 2025, 40(6): 333-340. doi: 10.12461/PKU.DXHX202405196

    17. [17]

      Futao YiYing LiuYao ChenJiahao ZhuQuanguo HeChun YangDongge MaJun Liu . Dual S-Scheme g-C3N4/Ag3PO4/g-C3N5 photocatalysts for removal of tetracycline pollutants through enhanced molecular oxygen activation. Chinese Chemical Letters, 2025, 36(8): 110544-. doi: 10.1016/j.cclet.2024.110544

    18. [18]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    19. [19]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    20. [20]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

Metrics
  • PDF Downloads(19)
  • Abstract views(3881)
  • HTML views(207)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return