Citation: REN Lin-Jiao, XUE Meng-Xiao, CHEN Qing-Hua, WEI Ming-Hang, ZHANG Pei, QIN Zi-Rui, YAN Yan-Xia, JIANG Li-Ying. Label-free Fluorescent Sensor for Detection of Single-stranded Nucleic Acids Based on G-rich Sequence[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(6): 962-971. doi: 10.19756/j.issn.0253-3820.221546
-
G-rich sequences with specific conformations (e.g. G-quadruplex and G-triplex) can interact with fluorescent dyes to enhance their fluorescence signal intensity, and are widely used for label-free fluorescent biosensing. In this study, two label-free fluorescent sensors based on G-rich sequences were constructed for detection of the gene sequence of β-amyloid protein (Aβ), a marker of Alzheimer's syndrome, using thiosemicarbazone T (ThT) as the fluorescent dye. The experimental results showed that the G-rich sequences were present as G-triplexes when the length of the hairpin stem was 4 base pairs, and the output signal of the G-triplex sensor decreased with increasing concentration of Aβ gene, with a linear detection range of 1-100 nmol/L and a detection limit of 0.3 nmol/L (S/N = 3). When the length of the hairpin stem was 8 base pairs and the base AATT was added at the 5' end, the G-rich signal decreased with the concentration of Aβ gene. The G-rich sequences were mostly present as G-quadruplexes after binding to Aβ gene, and the output signal of the G-quadruplex sensor was enhanced with increasing concentration of Aβ gene, with a linear detection range of 0.1-100 nmol/L and a detection limit of 0.04 nmol/L (S/N = 3). The two sensors were prepared in a similar process but with different detection principles, providing a basis for further research and application of G-rich sequences. It also provided a new idea for the label-free fluorescence detection of single-stranded nucleic acids.
-
-
[1]
ZHANG N, WANG L, DENG X, LIANG R, SU M, HE C, HU L, SU Y, REN J, YU F, DU L, JIANG S. J. Med. Virol., 2020, 92(4):408-417.
-
[2]
LI L, LI S, WU N, WU J, WANG G, ZHAO G, WANG J. ACS Synth. Biol., 2019, 8(10):2228-2237.
-
[3]
CHOI J H, LIM J, SHIN M, PAEK S H, CHOI J W. Nano Lett., 2021, 21(1):693-699.
-
[4]
YANG C, CHU X, ZENG L, RHOUATI A, ABBAS F, CUI S, LIN D. Biosensors, 2022, 12(6):423.
-
[5]
STOBIECKA M, CHAŁUPA A. Chem. Pap., 2015, 69(1):62-76.
-
[6]
-
[7]
XIONG Y, DAI J, ZHANG Y, ZHOU C, YUAN H, XIAO D. Anal. Methods, 2021, 13(21):2391-2395.
-
[8]
WANG K, ZHAI F H, HE M Q, WANG J, YU Y L, HE R H. Anal. Bioanal. Chem., 2019, 411(19):4569-4576.
-
[9]
MA G, YU Z, ZHOU W, LI Y, FAN L, LI X. J. Phys. Chem. B, 2019, 123(26):5405-5411.
-
[10]
SHAHSAVAR K, SHOKRI E, HOSSEINI M. Microchem. J., 2020, 158:105277.
-
[11]
LI Z B, ZOU S Y, WU S J, MIAO X M, MA D L. Talanta, 2020, 221:121661.
-
[12]
CHEN N, LI J, FENG X, YANG Y, ZHU L, CHEN X, LIU X, LI Y, WANG C, XIA L. Microchim. Acta, 2020, 187(8):432.
-
[13]
WANG S, SUN J, ZHAO J, LU S, YANG X. Anal. Chem., 2018, 90(5):3437-3442.
-
[14]
LU S, WANG S, ZHAO J, SUN J, YANG X. Anal. Chem., 2017, 89(16):8429-8436.
-
[15]
WU Z F, ZHOU H, HE J, LI M, MA X M, XUE J, LI X, FAN X L. Analyst, 2019, 144(17):5201-5206.
-
[16]
QIN S, CHEN X, XU Z, LI T, ZHAO S, HU R, ZHU J, LI Y, YANG Y, LIU M. Anal. Bioanal. Chem., 2022, 414(20):6149- 6156.
-
[17]
KATAOKA Y, FUJITA H, ENDOH T, SUGIMOTO N, KUWAHARA M. Molecules, 2020, 25(21):4936.
-
[18]
-
[19]
LI Q S, PENG S Z, CHANG Y, YANG C, YANG M J, WANG D D, ZHOU X S, SHAO Y. J. Photochem. Photobio., A, 2022, 432:114071.
-
[20]
ANDREEVA D V, TIKHOMIROV A S, SHCHEKOTIKHIN A E. Russ. Chem. Rev., 2021, 90(1):1-38.
-
[21]
-
[22]
VERMA S, RAVICHANDIRAN V, RANJAN N. Biochimie, 2021, 190:111-123.
-
[23]
LU S, WANG S, ZHAO J, SUN J, YANG X. Sci. China Chem., 2019, 63(3):404-410.
-
[24]
SHEN F, QIAN H, CHENG Y, XIE Y, YU H, YAO W, PEI R, GUO Y, LI H W. Talanta, 2020, 206:120216.
-
[25]
ZHONG D, YANG K, WANG Y, YANG X. Talanta, 2019, 175:217-223.
-
[26]
HAN D, WEI C. Talanta, 2018, 181:24-31.
-
[27]
GUO Y, XU P, HU H, ZHOU X, HU J. Talanta, 2013, 114:138-142.
-
[1]
-
-
[1]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[2]
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
-
[3]
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208
-
[4]
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
-
[5]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[6]
Yang Liu , Leilei Zhang , Kaixuan Liu , Ling-Ling Wu , Hai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759
-
[7]
Gonglan Ye , Xia Yin , Feng Xu , Peng Yang , Yingpeng Wu , Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071
-
[8]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[9]
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021
-
[10]
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
-
[11]
Xiaoming Fu , Haibo Huang , Guogang Tang , Jingmin Zhang , Junyue Sheng , Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214
-
[12]
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
-
[13]
Jiajun Wang , Guolin Yi , Shengling Guo , Jianing Wang , Shujuan Li , Ke Xu , Weiyi Wang , Shulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050
-
[14]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[15]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[16]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[17]
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
-
[18]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[19]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[20]
Chunyan Yang , Qiuyu Rong , Fengyin Shi , Menghan Cao , Guie Li , Yanjun Xin , Wen Zhang , Guangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767
-
[1]
Metrics
- PDF Downloads(12)
- Abstract views(1429)
- HTML views(82)