Citation: SUN Zhi-Yuan,  FAN Wen-Fang,  WANG Yong,  ZHUANG Qian-Fen. Poly(neutral red)/Multi-walled Carbon Nanotube Composite Modified Electrochemical Sensor for Ratiometric Detection of Estriol[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(1): 42-52. doi: 10.19756/j.issn.0253-3820.221543 shu

Poly(neutral red)/Multi-walled Carbon Nanotube Composite Modified Electrochemical Sensor for Ratiometric Detection of Estriol

  • Corresponding author: ZHUANG Qian-Fen, qfzhuang@ncu.edu.cn
  • Received Date: 3 November 2022
    Revised Date: 23 November 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.31960495, 32160600, 21864017).

  • A poly(neutral red)/multi-walled carbon nanotube nanocomposite modified electrochemical sensor was established for ratiometric sensing of estriol. The poly(neutral red) was used as the internal reference electroactive probe, and the oxidation peak current ratio of estriol to poly(neutral red) was used for accurate quantitative detection of estriol. The poly(neutral red)/multi-walled carbon nanotube nanocomposite was demonstrated good electroconductivity and high electrocatalytic performance which could improve the detection sensitivity. The response of the ratiometric sensor was linearly proportion to the estriol concentration in the 0.1-2.0 μmol/L range, with a limit of detection (S/N=3) of 0.08 μmol/L. The electrochemical oxidation reaction of estriol on the poly(neutral red)/multiwalled carbon nanotube nanocomposite/glassy carbon electrode was demonstrated to undergo a two-electron/two-proton process. Moreover, the sensor had high sensitivity, strong anti-interference ability and good stability, and was successfully applied to testriol analysis in pharmaceutical cream, urine and lake water samples.
  • 加载中
    1. [1]

      ESPOSITO G. Gynecol. Endocrinol., 1991, 5(2):131-153.

    2. [2]

      HEAD K A. Altern. Med. Rev., 1998, 3(2):101-113.

    3. [3]

      HUANG X Z, SPINK D C, SCHNEIGER E, LING H L, RAI A J, ROSANO T G, CHEN B R, CAO Z M. Clin. Chem., 2014, 60(1):260-268.

    4. [4]

      LEIS H J, FAULER G, RECHBERGER G N, WINDISCHHOFER W. J. Chromatogr. B:Anal. Technol. Biomed. Life Sci., 2003, 794(2):205-213.

    5. [5]

      TANG Y P, ZHAO S Q, WU Y S, ZHOU J W, LI M. Anal. Methods., 2013, 5(16):4068-4073.

    6. [6]

      BARRETO F C, SILVA M K L, CESARINO I. Chemosensors, 2022, 10(10):395.

    7. [7]

      CHARITHRA M M, MANJUNATHA J G G, RARIL C. Adv. Pharm. Bull., 2020, 10(2):247-253.

    8. [8]

      JODAR L V, SANTOS F A, ZUCOLOTTO V. J. Solid State Electrochem., 2018, 22(5):1431-1438.

    9. [9]

      SILVEIRA J, PIOVESAN J V, SPINELLI A. Microchem. J., 2017, 133:22-30.

    10. [10]

      ZHAO Q, FARAJ Y, LIU L Y, WANG W, XIE R, LIU Z, JU X J, WEI J, CHU L Y. Microchem. J., 2020, 158:105185.

    11. [11]

      RAYMUNDO-PEREIRA P A, CAMPOS A M, VICENTINI F C, JANEGITZ B C, MENDONCA C D, FURINI L N, BOAS N V, CALEGARO M L, CONSTANTINO C J L, MACHADO S A S, OLIVEIRA O N. Talanta, 2017, 174:652-659.

    12. [12]

      JIN H, GUI R J, YU J B, LV W, WANG Z H. Biosens. Bioelectron., 2017, 91:523-537.

    13. [13]

      KARYAKIN A A, BOBROVA O A, KARYAKINA E E. J. Electroanal. Chem., 1995, 399(1-2):179-184.

    14. [14]

      YANG Y X, YANG J, HE Y C, LI Y C. Sens. Actuators, B, 2021, 330(7):129302.

    15. [15]

      SLJUKIC B, BANKS C E, COMPTON R G. Nano Lett., 2006, 6(7):1556-1558.

    16. [16]

      XIANG L, ZHANG Z N, YU P, ZHANG J, SU L, OHSAKA T, MAO L Q. Anal. Chem., 2008, 80(17):6587-6593.

    17. [17]

      BARD A J, FAULKNER L R. Electrochemical Methods:Fundamentals and Applications, 2nd Ed. New York:John Wiley and Sons., 2001.

    18. [18]

      MAYER P, HOLZE R. Surf. Sci., 2003, 522(1-3):55-63.

    19. [19]

      MORAVKOVA Z, TRCHOVA M, TOMSIK E, CECHVALA J, STEJSKAL J. Polym. Degrad. Stab., 2012, 97(8):1405-1414.

    20. [20]

      MAZEIKIENE R, NIAURA G, MALINAUSKAS A. J. Colloid Interface Sci., 2009, 336(1) 195-199.

    21. [21]

      LAVIRON E. J. Electroanal. Chem. Interfacial Electrochem., 1979, 101(1):19-28.

    22. [22]

      MING Y C, LONG Y J, JUN T X, ZHEN Z G, YUE Z. React. Funct. Polym., 2006, 66(11):1336-1341.

  • 加载中
    1. [1]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    2. [2]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    3. [3]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    4. [4]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    5. [5]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    6. [6]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    7. [7]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    8. [8]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    9. [9]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    10. [10]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    13. [13]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    14. [14]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    15. [15]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    16. [16]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

Metrics
  • PDF Downloads(7)
  • Abstract views(733)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return