Citation: LING Meng-Xuan,  LU Su-Min,  SUN Hao,  LIU Dan,  BIAN Xi-Hui. X-ray Diffraction Spectral Denoising Based on Empirical Mode Decomposition and t-Test[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(3): 445-453. doi: 10.19756/j.issn.0253-3820.221534 shu

X-ray Diffraction Spectral Denoising Based on Empirical Mode Decomposition and t-Test

  • Corresponding author: BIAN Xi-Hui, bianxihui@163.com
  • Received Date: 30 October 2022
    Revised Date: 3 February 2023

    Fund Project: Supported by the Open Projects Fund of National Medical Products Administration Key Laboratory for Technology Research and Evaluation of Drug Products (No. 2022TREDP04) and the Tianjin Science and Technology Program (No. 21ZYJDJC00100).

  • X-ray diffraction (XRD) has been widely used in the field of analytical chemistry because it can quickly analyze the composition of materials and the structure and morphology of atoms or molecules inside materials. However, due to the influence of instrument vibration, electromagnetic interference and other factors, the XRD spectrum measured by X-ray diffractometer is extremely noisy. Therefore, in this study, empirical mode decomposition (EMD) combined with t-test was introduced for XRD spectral denoising. Firstly, the XRD spectrum was decomposed by EMD to obtain a series of intrinsic mode function (IMF) components. The high frequency components represented noise and the low frequency components represented useful information. However, sometimes the noise was indistinguishable from useful information. Therefore, the statistical t-test method was introduced in this study to determine the significant difference between the mean of IMFs and zero. Finally, the components with no significant difference were deleted, and the components with significant difference were reconstructed to obtain denosied XRD spectrum. The feasibility of this method was verified by a simulated XRD spectrum and two measured XRD spectrum. The results showed that EMD combined with t-test could effectively remove the noise in XRD spectrum in comparison with Savitzky-Golay (SG) smoothing.
  • 加载中
    1. [1]

      WONG L J, KAMINER I. Appl. Phys. Lett., 2022, 119(13):130502.

    2. [2]

      YAMASHITA A, NAGATA T, YAGYU S, ASAHI T, CHIKYOW T. Jpn. J. Appl. Phys., 2021, 60(SC):SCCG04.

    3. [3]

      BIAN X, LING M, CHU Y, LIU P, TAN X. Front. Chem., 2022, 10:949461.

    4. [4]

      SAVITZKY A, GOLAY M J E. Anal. Chem., 1964, 36(8):1627-1639.

    5. [5]

      BAI Y, LIU Q. Biomed. Opt. Express, 2020, 11(1):200-214.

    6. [6]

      SHAO X G, LEUNG A K M, CHAU F T. Acc. Chem. Res., 2003, 36(4):276-283.

    7. [7]

      LOC I, KECOGLU I, UNLU M B, PARLATAN U. J. Raman Spectrosc., 2022, 53(8):1445-1452.

    8. [8]

      YAO Z X, SU H, YAO J, HUANG X C. Anal. Chem., 2021, 93(49):16489-16503.

    9. [9]

      LIU Y, WANG Y, XIA Z, WANG Y, WU Y, GONG Z. Spectrochim. Acta, Part A, 2019, 211:336-341.

    10. [10]

      CHEN D, CAI W, SHAO X. Anal. Bioanal. Chem., 2007, 387(3):1041-1048.

    11. [11]

      LUO S H, WANG X, CHEN G Y, XIE Y, ZHANG W H, ZHOU Z F, ZHANG Z M, REN B, LIU G K, TIAN Z Q. Anal. Chem., 2021, 93(24):8408-8413.

    12. [12]

      HUANG N E, SHEN Z, LONG S R, WU M L C, SHIH H H, ZHENG Q N, YEN N C, TUNG C C, LIU H H. Proc. R. Soc. A, 1998, 454(1971):903-995.

    13. [13]

      LING M, BIAN X, WANG S, HUANG T, LIU P, WANG S, TAN X. Chemom. Intell. Lab. Syst., 2022, 230:104655.

    14. [14]

      HASAN N I, BHATTACHARJEE A. Biomed. Signal Process. Control, 2019, 52:128-140.

    15. [15]

      BLANCO-VELASCO M, WENG B, BARNER K E. Comput. Biol. Med., 2008, 38(1):1-13.

    16. [16]

      RAKSHIT M, DAS S. Biomed. Signal Process. Control, 2018, 40:140-148.

    17. [17]

      LEÓN-BEJARANO F, RAMÍREZ-ELÍAS M, MENDEZ M O, DORANTES-MÉNDEZ G, RODRÍGUEZ-ARANDA M C, ALBA A. Int. J. Mod. Phys. C, 2017, 28(9):1750116.

    18. [18]

      LI J, TONG Y, GUAN L, WU S, LI D. RSC Adv., 2018, 8(16):8558-8568.

    19. [19]

      ROCHON J, KIESER M. Br. J. Math. Stat. Psychol., 2011, 64(3):410-426.

    20. [20]

      BIAN X, ZHANG C, LIU P, WEI J, TAN X, LIN L, CHANG N, GUO Y. Chemom. Intell. Lab. Syst., 2017, 170:96-101.

    21. [21]

      ZHANG C, ZHOU L, ZHAO Y, ZHU S, LIU F, HE Y. Chemom. Intell. Lab. Syst., 2020, 203:104063.

    22. [22]

      KIM T K, PARK J H. Korean J. Anesthesiol., 2019, 72(4):331-335.

  • 加载中
    1. [1]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    2. [2]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    3. [3]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    4. [4]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    5. [5]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    6. [6]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    7. [7]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    8. [8]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    9. [9]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    10. [10]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    11. [11]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    12. [12]

      Hui Xiong Yan Wang Rongxian Bai Yongqi Wu Chengmei Liu Yuefa Gong Jian Zhang . Development of a Compound Talent Training System Based on Virtual Technology: a Case Study of Chemical Unit and Process Simulation Practices. University Chemistry, 2024, 39(10): 314-317. doi: 10.12461/PKU.DXHX202405071

    13. [13]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    16. [16]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    17. [17]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    18. [18]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    19. [19]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    20. [20]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

Metrics
  • PDF Downloads(8)
  • Abstract views(918)
  • HTML views(131)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return