Citation: ZHANG Di,  ZHANG Hai-Yan,  CHEN Bo-Xin,  ZHU Yu-Chen,  ZHAO Bin,  LI Lei,  ZHENG Dan,  FENG Fei. Micro Gas Chromatographic Column with HKUST-1 as A Stationary Phase[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(3): 429-435. doi: 10.19756/j.issn.0253-3820.221492 shu

Micro Gas Chromatographic Column with HKUST-1 as A Stationary Phase

  • Corresponding author: ZHENG Dan,  FENG Fei, 
  • Received Date: 4 October 2022
    Revised Date: 24 November 2022

    Fund Project: Supported by the National Key R&D Program of China (Nos. 2018YFA0208504, 2021YFC2800301), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA22020504) and the Shanghai Science and Technology Innovation Action Plan, Medical Innovation Research Special Project (No. 22Y11900600).

  • The miniaturization of gas chromatographic columns is beneficial to the miniaturization of gas chromatographic systems. The separation of light alkanes is a challenge for micro gas chromatographic columns (μGCC). Metal organic framework material is a new type of porous material that has been developed rapidly in the last two decades, and has attracted a lot of attention from researchers as stationary phases for gas chromatography. In this study, a μGCC was prepared based on MEMS technology, and a metal organic framework material HKUST-1 was synthesized at room temperature. HKUST-1 was coated into the μGCC as a stationary phase by dynamic coating method. The testing result of the μGCC with HKUST-1 stationary phase showed that the μGCC could completely separate light alkanes mixtures (methane, ethane, propane and n-butane), and the resolution of methane and ethane that were difficult to separate was 9.2.
  • 加载中
    1. [1]

      ZUSHI Y, HASHIMOTO S, TANABE K. Chemosphere, 2016, 156:398-406.

    2. [2]

      GIRI A, COUTRIADE M, RACAUD A, OKUDA K, DANE J, CODY R B, FOCANT J F. Anal. Chem., 2017, 89(10):5395-5403.

    3. [3]

      QIAN Y, WANG Z, TUO J, ZHANG M, WU C, ZHANG T. Pet. Sci. Technol., 2017, 35(2):134-140.

    4. [4]

      ALFEELI B, NARAYANAN S, MOODIE D, ZELLNER P, MCMILLAN M, HIRTENSTEIN D, RICE G, AGAH M. IEEE Sens. J., 2013, 13(11):4312-4319.

    5. [5]

      TERRY S C, JERMAN J H, ANGELL J B. IEEE Trans. Electron Devices, 1979, 26(12):1880-1886.

    6. [6]

      ZHOU M, SHARMA R, ZHU H, LI Z, LI J, WANG S, BISCO E, MASSEY J, PENNINGTON A, SJODING M, DICKSON R P, PARK P, HYZY R, NAPOLITANO L, GILLIES C E, WARD K R, FAN X. Anal. Bioanal. Chem., 2019, 411(24):6435-6447.

    7. [7]

      CHOWDHURY M, GHOLIZADEH A, AGAH M. Fuel, 2021, 286:119387.

    8. [8]

      ALI S, MEHDI A K, TAYLOR L T, AGAH M. Sens. Actuators, B, 2009, 141(1):309-315.

    9. [9]

      SUN J, CUI D, CHEN X, ZHANG L, CAI H, LI H. J. Chromatogr. A, 2013, 1291:122-128.

    10. [10]

      CHEN B, FENG F, ZHAO Y, LIU Q, ZHAO B, LI L, ZHOU H, LI X. J. Chromatogr. A, 2022, 1662:462725.

    11. [11]

      SUN J H, CUI D F, LI Y T, ZHANG L L, CHEN J, LI H, CHEN X. Sens. Actuators, B, 2009, 141(2):431-435.

    12. [12]

      ZAREIAN-JAHROMI M A, AGAH M. J. Microelectromech. Syst., 2010, 19(2):294-304.

    13. [13]

    14. [14]

      ZHANG H, FENG F, ZHAO Y, ZHAO B, LI L, ZHENG D, LI X. J. Chromatogr. A, 2022, 1673:463082.

    15. [15]

      WANG D, SHAKEEL H, LOVETTE J, RICE G W, HEFLIN J R, AGAH M. Anal. Chem., 2013, 85(17):8135-8141.

    16. [16]

      HAUDEBOURG R, MATOUK Z, ZOGHLAMI E, AZZOUZ I, DANAIE K, SASSIAT P, THIEBAUT D, VIAL J. Anal. Bioanal. Chem., 2014, 406(4):1245-1247.

    17. [17]

      STADERMANN M, MCBRADY A D, DICK B, REID V R, NOY A, SYNOVEC R E, BAKAJIN O. Anal. Chem., 2006, 78(16):5639-5644.

    18. [18]

      ZHAO Y Y, CHEN B X, LIU Q Y, LI X X, ZHENG D, FENG F. Proc. -IEEE Micro Electro Mech. Syst., IEEE, New York. 2021:1034-1035.

    19. [19]

      LI H, EDDAOUDI M, O'KEEFFE M, YAGHI O M. Nature, 1999, 402(6759):276-279.

    20. [20]

      FURUKAWA H, CORDOVA K E, O'KEEFFE M, YAGHI O M. Science, 2013, 341(6149):1230444.

    21. [21]

      XUE D X, WANG Q, BAI J. Coord. Chem. Rev., 2019, 378:2-16.

    22. [22]

      MA M, LU L, LI H, XIONG Y, DONG F. Polymers, 2019, 11(11):1823.

    23. [23]

      ZHANG J, CHEN Z. J. Chromatogr. A, 2017, 1530:1-18.

    24. [24]

      KOTOVA A A, THIEBAUT D, VIAL J, TISSOT A, SERRE C. Coord. Chem. Rev., 2022, 455:214364.

    25. [25]

      MENG S S, XU M, HAN T, GU Y H, GU Z Y. Anal. Methods, 2021, 13(11):1318-1331.

    26. [26]

      MAO Y, SHI L, HUANG H, CAO W, LI J, SUN L, JIN X, PENG X. Chem. Commun., 2013, 49(50):5666-5668.

    27. [27]

      AZAD F N, GHAEDI M, DASHTIAN K, HAJATI S, PEZESHKPOUR V. Ultrason. Sonochem., 2016, 31:383-393.

    28. [28]

      ZHAO Z, WANG S, YANG Y, LI X, LI J, LI Z. Chem. Eng. J., 2015, 259:79-89.

    29. [29]

      ROCÍO-BAUTISTA P, MARTÍNEZ-BENITO C, PINO V, PASÁN J, AYALA J H, RUIZ-PÉREZ C, AFONSO A M. Talanta, 2015, 139:13-20.

    30. [30]

      ZHUANG J L, CEGLAREK D, PETHURAJ S, TERFORT A. Adv. Funct. Mater., 2011, 21(8):1442-1447.

    31. [31]

      TIAN B, ZHAO B, FENG F, LUO F, ZHOU H, GE X, YANHONG W, LI X. J. Chromatogr. A, 2018, 1565:130-137.

    32. [32]

      MÜNCH A S, MERTENS F O R L. Microporous Mesoporous Mater., 2018, 270:180-188.

  • 加载中
    1. [1]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    2. [2]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    3. [3]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    6. [6]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    7. [7]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    8. [8]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    9. [9]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    10. [10]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    19. [19]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    20. [20]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

Metrics
  • PDF Downloads(12)
  • Abstract views(673)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return