Citation: LIU Bo-Yang,  WANG Ran-Ran,  SUN Jing. Advances in Visualization of Flexible Wearable Sensors[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(3): 305-315. doi: 10.19756/j.issn.0253-3820.221486 shu

Advances in Visualization of Flexible Wearable Sensors

  • Corresponding author: WANG Ran-Ran, wangranran@mail.sic.ac.cn
  • Received Date: 30 September 2022
    Revised Date: 8 November 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.62122080) and the Shanghai Commission of Science and Technology Program (No. 22dz1205000).

  • Beacause of the light weight, good conformability and high biosafety, flexible wearable sensors show broad application prospects in military, healthcare, medical and sports areas. Visualization is an important direction for the development of flexible wearable sensors, which is significant to enrich their functions and expand their application areas. This paper reviewed the progress of visualized flexible wearable sensors in recent years, summarized the existing types and their mechanisms, and highlighted the ones which relied on light-emitting or colour-changing materials for visualization. Finally, the opportunities and challenges of visualized flexible wearable sensors were presented.
  • 
    1. [1]

    2. [2]

      CHANDRA B P, SHRIVASTAVA K K. J. Phys. Chem. Solids, 1978, 39(9):939-940.

    3. [3]

    4. [4]

      GUO X, BIAN J, BAI Y, MA Z, YANG S, WANG Z. Chem. Phys. Lett., 2022, 787:139235.

    5. [5]

      WANG W, WANG Z B, ZHANG J, ZHOU J, DONG W, WANG Y. Nano Energy, 2022, 94:106920.

    6. [6]

      BAI Y Q, GUO X P, TIAN B R, LIANG Y M, PENG D F, WANG Z F. Adv. Sci., 2022:2203249.

    7. [7]

      WANG F L, WANG F L, WANG X D, WANG S C, JIANG J F, LIU Q L, HAO X T, HAN L, WANG J J, PAN C F, LIU H, SANG Y H. Nano Energy, 2019, 63:7.

    8. [8]

      LEE H, CHO E, KEREKES T W, KWON S L, YUN G J, KIM J. Polymers, 2020, 12(8):1720.

    9. [9]

      LI H, ZHANG Y, DAI H, TONG W, ZHOU Y, ZHAO J, AN Q. Nanoscale, 2018, 10(12):5489-5495.

    10. [10]

      LV S, HAN Y, SHUAI L, CHEN B, WAN J. J. Lumin., 2021, 239:118303.

    11. [11]

      JEONG S M, SONG S, LEE S K, CHOI B. Appl. Phys. Lett., 2013, 102(5):5.

    12. [12]

      ZHAO Y, DU J, WU X, WANG Y, POELMAN D. J. Lumin., 2020, 220:117035.

    13. [13]

      DU J, POELMAN D. Ceramics Int., 2019, 45(7):8345-8353.

    14. [14]

      DENG Y, WEI J, SUN J, ZHANG Y, DONG L, SHAN C X. J. Lumin., 2020, 225:117364.

    15. [15]

      MATSUZAWA T, AOKI Y, TAKEUCHI N, MURAYAMA Y. J. Electrochem. Soc., 1996, 143(8):2670-2673.

    16. [16]

      QIAN X, CAI Z, SU M, LI F, FANG W, LI Y, ZHOU X, LI Q, FENG X, LI W, HU X, WANG X, PAN C, SONG Y. Adv. Mater., 2018, 30(25):1800291.

    17. [17]

      WANG X, ZHANG H, YU R, DONG L, PENG D, ZHANG A, ZHANG Y, LIU H, PAN C, WANG Z L. Adv. Mater., 2015, 27(14):2324-2331.

    18. [18]

      CHEN B, ZHANG X, WANG F. Acc. Mater. Res., 2021, 2(5):364-373.

    19. [19]

      MA X, WANG C, WEI R, HE J, LI J, LIU X, HUANG F, GE S, TAO J, YUAN Z, CHEN P, PENG D, PAN C. ACS Nano, 2022, 16(2):2789-2797.

    20. [20]

      TU D, XU C N, YOSHIDA A, FUJIHALA M, HIROTSU J, ZHENG X G. Adv. Mater., 2017, 29(22):1606914.

    21. [21]

      KOO J H, JEONG S, SHIM H J, SON D, KIM J, KIM D C, CHOI S, HONG J I, KIM D H. ACS Nano, 2017, 11(10):10032-10041.

    22. [22]

      ZHOU X, XU X, ZUO Y, LIAO M, SHI X, CHEN C, XIE S, ZHOU P, SUN X, PENG H. J. Mater. Chem. C, 2020, 8(3):935-942.

    23. [23]

    24. [24]

      KWON D K, MYOUNG J M. ACS Nano, 2020, 14(7):8716-8723.

    25. [25]

      ZHAO H, O'BRIEN K, LI S, SHEPHERD R F. Sci. Robot., 2016, 1(1):eaai7529.

    26. [26]

      BAI H, LI S, BARREIROS J, TU Y, POLLOCK C R, SHEPHERD R F. Science, 2020, 370(6518):848-852.

    27. [27]

      ZHANG L, PAN J, ZHANG Z, WU H, YAO N, CAI D W, XU Y X, ZHANG J, SUN G F, WANG L Q, GENG W D, JIN W G, FANG W, DI D W, TONG L M. Opto-Electron. Adv., 2020, 3(3):190022.

    28. [28]

      WANG L, WEI Z, RAO W, YOU X, LIU J, LIU Y, CAI H. Inorg. Chem. Commun., 2021, 130:108702.

    29. [29]

      MA Y, DONG Y F, LIU S Y, SHE P Y, LU J Y, LIU S J, HUANG W, ZHAO Q. Adv. Opt. Mater., 2020, 8(6):6.

    30. [30]

      KACZMAREK A M, MAEGAWA Y, ABALYMOV A, SKIRTACH A G, INAGAKI S, VAN DER VOORT P. ACS Appl. Mater. Interfaces, 2020, 12(11):13540-13550.

    31. [31]

      LI Z, ZHANG J, JIN J, YANG F, ALEISA R, YIN Y. J. Am. Chem. Soc., 2021, 143(38):15791-15799.

    32. [32]

      HAN X, LUAN X, SU H, LI J, YUAN S, LEI Z, PEI Y, WANG Q. Angew. Chem. Int. Ed., 2020, 59(6):2309-2312.

    33. [33]

      ZHANG S, LI Y, FENG L, XUE Q, GAO Z, TUNG C, SUN D. Nano Res., 2021, 14(10):3343-3351.

    34. [34]

      STRIŽIĆ JAKOVLJEVIĆ M, LOZO B, GUNDE M K. Crystals, 2021, 11(8):876.

    35. [35]

      TRAN L V, SLABAUGH C D. Int. J. Heat Mass Transfer, 2019, 137:229-241.

    36. [36]

      GUAN Y, ZHANG L, WANG D, WEST J L, FU S. Mater. Des., 2018, 147:28-34.

    37. [37]

    38. [38]

      PARK B, KIM J U, KIM J, TAHK D, JEONG C, OK J, SHIN J H, KANG D, KIM T I. Adv. Funct. Mater., 2019, 29(40):1903360.

    39. [39]

      CHOE A, YEOM J, SHANKER R, KIM M P, KANG S, KO H. NPG Asia Mater., 2018, 10(9):912-922.

    40. [40]

      SUN J G, YANG T N, WANG C Y, CHEN L J. Nano Energy, 2018, 48:383-390.

    41. [41]

      MORTIMER R J. Electrochromic Materials. Annual Review of Materials Research:Annual Reviews Inc. 2011:241-268.

    42. [42]

      HAN X, DU W, CHEN M, WANG X, ZHANG X, LI X, LI J, PENG Z, PAN C, WANG Z L. Adv. Mater., 2017, 29(26):1701253.

    43. [43]

      QIU M, SUN P, LIU Y, HUANG Q, ZHAO C, LI Z, MAI W. Adv. Mater. Technol., 2018, 3(2):1700288.

    44. [44]

      YIN L, CAO M, KIM K N, LIN M, MOON J M, SEMPIONATTO J R, YU J, LIU R, WICKER C, TRIFONOV A, ZHANG F, HU H, MORETO J R, GO J, XU S, WANG J. Nat. Electron., 2022, 5(10):694-705.

    45. [45]

      HONG W, YUAN Z, CHEN X. Small, 2020, 16(16):1907626.

    46. [46]

      PARK T H, YU S, CHO S H, KANG H S, KIM Y, KIM M J, EOH H, PARK C, JEONG B, LEE S W, RYU D Y, HUH J, PARK C. NPG Asia Mater., 2018, 10(4):328-339.

    47. [47]

      WANG Y, SHANG L, CHEN G, SUN L, ZHANG X, ZHAO Y. Sci. Adv., 2020, 6(4):eaax8258.

    1. [1]

    2. [2]

      CHANDRA B P, SHRIVASTAVA K K. J. Phys. Chem. Solids, 1978, 39(9):939-940.

    3. [3]

    4. [4]

      GUO X, BIAN J, BAI Y, MA Z, YANG S, WANG Z. Chem. Phys. Lett., 2022, 787:139235.

    5. [5]

      WANG W, WANG Z B, ZHANG J, ZHOU J, DONG W, WANG Y. Nano Energy, 2022, 94:106920.

    6. [6]

      BAI Y Q, GUO X P, TIAN B R, LIANG Y M, PENG D F, WANG Z F. Adv. Sci., 2022:2203249.

    7. [7]

      WANG F L, WANG F L, WANG X D, WANG S C, JIANG J F, LIU Q L, HAO X T, HAN L, WANG J J, PAN C F, LIU H, SANG Y H. Nano Energy, 2019, 63:7.

    8. [8]

      LEE H, CHO E, KEREKES T W, KWON S L, YUN G J, KIM J. Polymers, 2020, 12(8):1720.

    9. [9]

      LI H, ZHANG Y, DAI H, TONG W, ZHOU Y, ZHAO J, AN Q. Nanoscale, 2018, 10(12):5489-5495.

    10. [10]

      LV S, HAN Y, SHUAI L, CHEN B, WAN J. J. Lumin., 2021, 239:118303.

    11. [11]

      JEONG S M, SONG S, LEE S K, CHOI B. Appl. Phys. Lett., 2013, 102(5):5.

    12. [12]

      ZHAO Y, DU J, WU X, WANG Y, POELMAN D. J. Lumin., 2020, 220:117035.

    13. [13]

      DU J, POELMAN D. Ceramics Int., 2019, 45(7):8345-8353.

    14. [14]

      DENG Y, WEI J, SUN J, ZHANG Y, DONG L, SHAN C X. J. Lumin., 2020, 225:117364.

    15. [15]

      MATSUZAWA T, AOKI Y, TAKEUCHI N, MURAYAMA Y. J. Electrochem. Soc., 1996, 143(8):2670-2673.

    16. [16]

      QIAN X, CAI Z, SU M, LI F, FANG W, LI Y, ZHOU X, LI Q, FENG X, LI W, HU X, WANG X, PAN C, SONG Y. Adv. Mater., 2018, 30(25):1800291.

    17. [17]

      WANG X, ZHANG H, YU R, DONG L, PENG D, ZHANG A, ZHANG Y, LIU H, PAN C, WANG Z L. Adv. Mater., 2015, 27(14):2324-2331.

    18. [18]

      CHEN B, ZHANG X, WANG F. Acc. Mater. Res., 2021, 2(5):364-373.

    19. [19]

      MA X, WANG C, WEI R, HE J, LI J, LIU X, HUANG F, GE S, TAO J, YUAN Z, CHEN P, PENG D, PAN C. ACS Nano, 2022, 16(2):2789-2797.

    20. [20]

      TU D, XU C N, YOSHIDA A, FUJIHALA M, HIROTSU J, ZHENG X G. Adv. Mater., 2017, 29(22):1606914.

    21. [21]

      KOO J H, JEONG S, SHIM H J, SON D, KIM J, KIM D C, CHOI S, HONG J I, KIM D H. ACS Nano, 2017, 11(10):10032-10041.

    22. [22]

      ZHOU X, XU X, ZUO Y, LIAO M, SHI X, CHEN C, XIE S, ZHOU P, SUN X, PENG H. J. Mater. Chem. C, 2020, 8(3):935-942.

    23. [23]

    24. [24]

      KWON D K, MYOUNG J M. ACS Nano, 2020, 14(7):8716-8723.

    25. [25]

      ZHAO H, O'BRIEN K, LI S, SHEPHERD R F. Sci. Robot., 2016, 1(1):eaai7529.

    26. [26]

      BAI H, LI S, BARREIROS J, TU Y, POLLOCK C R, SHEPHERD R F. Science, 2020, 370(6518):848-852.

    27. [27]

      ZHANG L, PAN J, ZHANG Z, WU H, YAO N, CAI D W, XU Y X, ZHANG J, SUN G F, WANG L Q, GENG W D, JIN W G, FANG W, DI D W, TONG L M. Opto-Electron. Adv., 2020, 3(3):190022.

    28. [28]

      WANG L, WEI Z, RAO W, YOU X, LIU J, LIU Y, CAI H. Inorg. Chem. Commun., 2021, 130:108702.

    29. [29]

      MA Y, DONG Y F, LIU S Y, SHE P Y, LU J Y, LIU S J, HUANG W, ZHAO Q. Adv. Opt. Mater., 2020, 8(6):6.

    30. [30]

      KACZMAREK A M, MAEGAWA Y, ABALYMOV A, SKIRTACH A G, INAGAKI S, VAN DER VOORT P. ACS Appl. Mater. Interfaces, 2020, 12(11):13540-13550.

    31. [31]

      LI Z, ZHANG J, JIN J, YANG F, ALEISA R, YIN Y. J. Am. Chem. Soc., 2021, 143(38):15791-15799.

    32. [32]

      HAN X, LUAN X, SU H, LI J, YUAN S, LEI Z, PEI Y, WANG Q. Angew. Chem. Int. Ed., 2020, 59(6):2309-2312.

    33. [33]

      ZHANG S, LI Y, FENG L, XUE Q, GAO Z, TUNG C, SUN D. Nano Res., 2021, 14(10):3343-3351.

    34. [34]

      STRIŽIĆ JAKOVLJEVIĆ M, LOZO B, GUNDE M K. Crystals, 2021, 11(8):876.

    35. [35]

      TRAN L V, SLABAUGH C D. Int. J. Heat Mass Transfer, 2019, 137:229-241.

    36. [36]

      GUAN Y, ZHANG L, WANG D, WEST J L, FU S. Mater. Des., 2018, 147:28-34.

    37. [37]

    38. [38]

      PARK B, KIM J U, KIM J, TAHK D, JEONG C, OK J, SHIN J H, KANG D, KIM T I. Adv. Funct. Mater., 2019, 29(40):1903360.

    39. [39]

      CHOE A, YEOM J, SHANKER R, KIM M P, KANG S, KO H. NPG Asia Mater., 2018, 10(9):912-922.

    40. [40]

      SUN J G, YANG T N, WANG C Y, CHEN L J. Nano Energy, 2018, 48:383-390.

    41. [41]

      MORTIMER R J. Electrochromic Materials. Annual Review of Materials Research:Annual Reviews Inc. 2011:241-268.

    42. [42]

      HAN X, DU W, CHEN M, WANG X, ZHANG X, LI X, LI J, PENG Z, PAN C, WANG Z L. Adv. Mater., 2017, 29(26):1701253.

    43. [43]

      QIU M, SUN P, LIU Y, HUANG Q, ZHAO C, LI Z, MAI W. Adv. Mater. Technol., 2018, 3(2):1700288.

    44. [44]

      YIN L, CAO M, KIM K N, LIN M, MOON J M, SEMPIONATTO J R, YU J, LIU R, WICKER C, TRIFONOV A, ZHANG F, HU H, MORETO J R, GO J, XU S, WANG J. Nat. Electron., 2022, 5(10):694-705.

    45. [45]

      HONG W, YUAN Z, CHEN X. Small, 2020, 16(16):1907626.

    46. [46]

      PARK T H, YU S, CHO S H, KANG H S, KIM Y, KIM M J, EOH H, PARK C, JEONG B, LEE S W, RYU D Y, HUH J, PARK C. NPG Asia Mater., 2018, 10(4):328-339.

    47. [47]

      WANG Y, SHANG L, CHEN G, SUN L, ZHANG X, ZHAO Y. Sci. Adv., 2020, 6(4):eaax8258.

  • 加载中
    1. [1]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    2. [2]

      Ruming Yuan Laiying Zhang Xiaoming Xu Pingping Wu Gang Fu . Application of Mathematica in Visualizing Physical Chemistry Formulas. University Chemistry, 2024, 39(8): 375-382. doi: 10.3866/PKU.DXHX202401030

    3. [3]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    4. [4]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    5. [5]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    6. [6]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    7. [7]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    8. [8]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    9. [9]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    12. [12]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    13. [13]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    14. [14]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    15. [15]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    16. [16]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    19. [19]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    20. [20]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

Metrics
  • PDF Downloads(16)
  • Abstract views(1116)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return