基于曼尼希反应的聚集诱导发光效应用于灵敏检测甲醛

吴金丹 曹莹姿 陈凯欣 查勇超 刘鸿燊 周平 李楠

引用本文: 吴金丹, 曹莹姿, 陈凯欣, 查勇超, 刘鸿燊, 周平, 李楠. 基于曼尼希反应的聚集诱导发光效应用于灵敏检测甲醛[J]. 分析化学, 2023, 51(2): 194-203. doi: 10.19756/j.issn.0253-3820.221482 shu
Citation:  WU Jin-Dan,  CAO Ying-Zi,  CHEN Kai-Xin,  ZHA Yong-Chao,  LIU Hong-Shen,  ZHOU Ping,  LI Nan. Mannich Reaction Based Aggregation-induced Emission for Fluorescent Sensitive Detection of Formaldehyde[J]. Chinese Journal of Analytical Chemistry, 2023, 51(2): 194-203. doi: 10.19756/j.issn.0253-3820.221482 shu

基于曼尼希反应的聚集诱导发光效应用于灵敏检测甲醛

    通讯作者: 李楠,E-mail:linanbie@jnu.edu.cn
  • 基金项目:

    广东省基础与应用基础研究基金项目(No.2020A1515010957)资助。

摘要: 甲醛是一类无色无味的致癌物,严重危害人类健康,对甲醛的灵敏检测在环境监测、毒物评估、临床诊断和医疗保健等领域均具有非常重要的意义。本研究合成了具有聚集诱导发光(Aggregation-inducedemission,AIE)效应的荧光探针四羟基四苯基乙烯(Tetra(4-hydroxyphenyl)ethylene,TPE-4OH),在1,2,4,5-苯四胺四盐酸盐(1,2,4,5-Benzenetetramine tetrahydrochloride,BTA)存在条件下,TPE-4OH与溶液中的甲醛分子发生曼尼希反应,从而发生AIE,引起荧光增强,荧光强度变化与体系中的甲醛水平密切相关,通过测定TPE-4OH的AIE强度可检测水溶液中甲醛浓度。优化了反应物浓度、溶液pH值以及反应时间等条件。在最优条件下,本方法检测甲醛的线性范围为1.0~2000 μmol/L,检出限为1.0 μmol/L。将本方法应用于血清样品中甲醛浓度的检测,回收率为93.7%~106.4%,显示了良好的实际应用价值,为水溶液中甲醛浓度检测提供了一种新方法。

English


    1. [1]

      TONG Z, LUO W, WANG Y, YANG F, HAN Y, LI H, LUO H, DUAN B, XU T, MAOYING Q, TAN H, WANG J, ZHAO H, LIU F, WAN Y. PLoS One, 2010, 5(4):e10234.TONG Z, LUO W, WANG Y, YANG F, HAN Y, LI H, LUO H, DUAN B, XU T, MAOYING Q, TAN H, WANG J, ZHAO H, LIU F, WAN Y. PLoS One, 2010, 5(4):e10234.

    2. [2]

      ZHANG Y, YANG Y, HE X, YANG P, ZONG T, SUN P, SUN R C, YU T, JIANG Z. J. Cell Mol. Med., 2021, 25(12):5358-5371.ZHANG Y, YANG Y, HE X, YANG P, ZONG T, SUN P, SUN R C, YU T, JIANG Z. J. Cell Mol. Med., 2021, 25(12):5358-5371.

    3. [3]

      YUAN G, DING H, PENG L, ZHOU L, LIN Q. Food Chem., 2020, 331:127221.YUAN G, DING H, PENG L, ZHOU L, LIN Q. Food Chem., 2020, 331:127221.

    4. [4]

      ZHAO Y X, ZHU W W, WU Y Y, CHEN Y Y, DU F K, YAN J, TAN X C, WANG Q. Microchem. J., 2021, 160:105727.ZHAO Y X, ZHU W W, WU Y Y, CHEN Y Y, DU F K, YAN J, TAN X C, WANG Q. Microchem. J., 2021, 160:105727.

    5. [5]

      TENG S, BEARD K, POURAHMAD J, MORIDANI M, EASSON E, POON R, O'BRIEN P J. Chem. Biol. Interact., 2001, 130-132:285-296.TENG S, BEARD K, POURAHMAD J, MORIDANI M, EASSON E, POON R, O'BRIEN P J. Chem. Biol. Interact., 2001, 130-132:285-296.

    6. [6]

      MICHEL B W, LIPPERT A R, CHANG C J. J. Am. Chem. Soc., 2012, 134(38):15668-15671.MICHEL B W, LIPPERT A R, CHANG C J. J. Am. Chem. Soc., 2012, 134(38):15668-15671.

    7. [7]

      REINGRUBER H, PONTEL L B. Curr. Opin. Toxicol., 2018, 9:28-34.REINGRUBER H, PONTEL L B. Curr. Opin. Toxicol., 2018, 9:28-34.

    8. [8]

      TULPULE K, DRINGEN R. J. Neurochem., 2013, 127(1):7-21.TULPULE K, DRINGEN R. J. Neurochem., 2013, 127(1):7-21.

    9. [9]

      GAO P, JIANG H, CHEN W, CUI Z. Dyes Pigm., 2020, 179:108376.GAO P, JIANG H, CHEN W, CUI Z. Dyes Pigm., 2020, 179:108376.

    10. [10]

      SOMAN A, QIU Y, CHAN LI Q. J. Chromatogr. Sci., 2008, 46(6):461-465.SOMAN A, QIU Y, CHAN LI Q. J. Chromatogr. Sci., 2008, 46(6):461-465.

    11. [11]

      YEH T S, LIN T C, CHEN C C, WEN H M. J. Food Drug Anal., 2013, 21(2):190-197.YEH T S, LIN T C, CHEN C C, WEN H M. J. Food Drug Anal., 2013, 21(2):190-197.

    12. [12]

      GANIE A S, BANO S, SULTANA S, SABIR S, KHAN M Z. Electroanalysis, 2021, 33(1):233-248.GANIE A S, BANO S, SULTANA S, SABIR S, KHAN M Z. Electroanalysis, 2021, 33(1):233-248.

    13. [13]

      EHSAN M A, REHMAN A. Anal. Methods, 2020, 12(32):4028-4036.EHSAN M A, REHMAN A. Anal. Methods, 2020, 12(32):4028-4036.

    14. [14]

      SUN X, ZHANG H, HAO S, ZHAI J, DONG S. ACS Sens., 2019, 4(10):2631-2637.SUN X, ZHANG H, HAO S, ZHAI J, DONG S. ACS Sens., 2019, 4(10):2631-2637.

    15. [15]

      LI M W, SHEN A, LIANG Y Q, ZHEN H, HAO X H, LIU X L, SUN X C, YANG Y X. Anal. Methods, 2020, 12(29):3748-3755.LI M W, SHEN A, LIANG Y Q, ZHEN H, HAO X H, LIU X L, SUN X C, YANG Y X. Anal. Methods, 2020, 12(29):3748-3755.

    16. [16]

      SHIN H S, LIM H H. Int. J. Food Sci. Tech., 2012, 47(2):350-356.SHIN H S, LIM H H. Int. J. Food Sci. Tech., 2012, 47(2):350-356.

    17. [17]

      MEI J, LEUNG N L C, KWOK R T K, LAM J W Y, TANG B Z. Chem. Rev., 2015, 115(21):11718-11940.MEI J, LEUNG N L C, KWOK R T K, LAM J W Y, TANG B Z. Chem. Rev., 2015, 115(21):11718-11940.

    18. [18]

      FENG G, KWOK R T K, TANG B Z, LIU B. Appl. Phys. Rev., 2017, 4(2):021307.FENG G, KWOK R T K, TANG B Z, LIU B. Appl. Phys. Rev., 2017, 4(2):021307.

    19. [19]

      LI Hai-Yin, CHANG Jia-Fu, LYU Wen-Xin, LI Feng. Chin. J. Anal. Chem., 2020, 48(10):1325-1333. 李海银, 常加富, 吕文欣, 李峰. 分析化学, 2020, 48(10):1325-1333.

    20. [20]

      LIANG J, TANG B Z, LIU B. Chem. Soc. Rev., 2015, 44(10):2798-2811.LIANG J, TANG B Z, LIU B. Chem. Soc. Rev., 2015, 44(10):2798-2811.

    21. [21]

      PAN J, MA J, LIU H, ZHANG Y, LU L. New J. Chem., 2021, 45(45):21151-21159.PAN J, MA J, LIU H, ZHANG Y, LU L. New J. Chem., 2021, 45(45):21151-21159.

    22. [22]

      LIOW S S, ZHOU H, SUGIARTO S, GUO S, CHALASANI M L S, VERMA N K, XU J, LOH X J. Biomacromolecules, 2017, 18(3):886-897.LIOW S S, ZHOU H, SUGIARTO S, GUO S, CHALASANI M L S, VERMA N K, XU J, LOH X J. Biomacromolecules, 2017, 18(3):886-897.

    23. [23]

      LI Y, ZHANG Y, WANG M, WANG D, CHEN K, LIN P, GE Y, LIU W, WU J. J. Hazard. Mater., 2021, 415:125712.LI Y, ZHANG Y, WANG M, WANG D, CHEN K, LIN P, GE Y, LIU W, WU J. J. Hazard. Mater., 2021, 415:125712.

    24. [24]

      WEN X, YAN L, FAN Z. New J. Chem., 2021, 45(18):8155-8165.WEN X, YAN L, FAN Z. New J. Chem., 2021, 45(18):8155-8165.

    25. [25]

      ZHAO X, JI C, MA L, WU Z, CHENG W, YIN M. ACS Sens., 2018, 3(10):2112-2117.ZHAO X, JI C, MA L, WU Z, CHENG W, YIN M. ACS Sens., 2018, 3(10):2112-2117.

    26. [26]

      LI P, ZHANG D, ZHANG Y, LU W, WANG W, CHEN T. ACS Sens., 2018, 3(11):2394-2401.LI P, ZHANG D, ZHANG Y, LU W, WANG W, CHEN T. ACS Sens., 2018, 3(11):2394-2401.

    27. [27]

      YU Zhi-Mei, LIAO Xing-Long, YU Jian-Yong, YANG Da-Cheng. J. Org. Chem. Res., 2016, 4(3):61-68. 于治梅, 廖兴龙, 蔚建勇, 杨大成. 有机化学研究, 2016, 4(3):61-68.

    28. [28]

      KLEINMAN E. Comp. Org. Synth., 1991, 2:893-951.KLEINMAN E. Comp. Org. Synth., 1991, 2:893-951.

    29. [29]

      ZHAO W, LI C, LIU B, WANG X, LI P, WANG Y, WU C, YAO C, TANG T, LIU X, CUI D. Macromolecules, 2014, 47(16):5586-5594.ZHAO W, LI C, LIU B, WANG X, LI P, WANG Y, WU C, YAO C, TANG T, LIU X, CUI D. Macromolecules, 2014, 47(16):5586-5594.

    30. [30]

      ZHANG X, MOHAMED M G, XIN Z, KUO S W. Polymer, 2020, 201:122552.ZHANG X, MOHAMED M G, XIN Z, KUO S W. Polymer, 2020, 201:122552.

    31. [31]

      WU Hong-Mei, GUO Yu, CAO Jian-Fang, CHEN Qiang-Qiang. Chin. J. Anal. Chem., 2018, 46(3):379-385. 吴红梅, 郭宇, 曹建芳, 陈强强. 分析化学, 2018, 46(3):379-385.

    32. [32]

      HONG Y, LAM J W Y, TANG B Z. Chem. Commun., 2009, (29):4332-4353.HONG Y, LAM J W Y, TANG B Z. Chem. Commun., 2009, (29):4332-4353.

    33. [33]

      JOSHI N S, WHITAKER L R, FRANCIS M B. J. Am. Chem. Soc., 2004, 126(49):15942-15943.JOSHI N S, WHITAKER L R, FRANCIS M B. J. Am. Chem. Soc., 2004, 126(49):15942-15943.

    34. [34]

      FILHO J F A, LEMOS B C, DE SOUZA A S, PINHEIRO S, GRECO S J. Tetrahedron, 2017, 73(50):6977-7004.FILHO J F A, LEMOS B C, DE SOUZA A S, PINHEIRO S, GRECO S J. Tetrahedron, 2017, 73(50):6977-7004.

    35. [35]

      LIN Q, FAN Y Q, GONG G F, MAO P P, WANG J, GUAN X W, LIU J, ZHANG Y M, YAO H, WEI T B. ACS Sustainable Chem. Eng., 2018, 6(7):8775-8781.LIN Q, FAN Y Q, GONG G F, MAO P P, WANG J, GUAN X W, LIU J, ZHANG Y M, YAO H, WEI T B. ACS Sustainable Chem. Eng., 2018, 6(7):8775-8781.

    36. [36]

      ZHANG S, WEN X, LONG M, XI J, HU J, TANG A. J. Alloys Compd., 2020, 829:154568.ZHANG S, WEN X, LONG M, XI J, HU J, TANG A. J. Alloys Compd., 2020, 829:154568.

    37. [37]

      ARSAWISET S, TEEPOO S. Anal. Chim. Acta, 2020, 1118:63-72.ARSAWISET S, TEEPOO S. Anal. Chim. Acta, 2020, 1118:63-72.

    38. [38]

      LIU Q, ZENG X, TIAN Y, HOU X, WU L. Talanta, 2019, 202:274-278.LIU Q, ZENG X, TIAN Y, HOU X, WU L. Talanta, 2019, 202:274-278.

    39. [39]

      HAN S, WANG J, JIA S. Microchim. Acta, 2014, 181(1-2):147-153.HAN S, WANG J, JIA S. Microchim. Acta, 2014, 181(1-2):147-153.

    40. [40]

      DING N, LI Z, HAO Y, YANG X. Food Chem., 2022, 384:132426.DING N, LI Z, HAO Y, YANG X. Food Chem., 2022, 384:132426.

    41. [41]

      XIN F, TIAN Y, JING J, ZHANG X. Anal. Methods, 2019, 11(23):2969-2975.XIN F, TIAN Y, JING J, ZHANG X. Anal. Methods, 2019, 11(23):2969-2975.

    42. [42]

      ZACHUT M, SHAPIRO F, SILANIKOVE N. Food Chem., 2016, 201:270-274.ZACHUT M, SHAPIRO F, SILANIKOVE N. Food Chem., 2016, 201:270-274.

  • 加载中
计量
  • PDF下载量:  21
  • 文章访问数:  975
  • HTML全文浏览量:  127
文章相关
  • 收稿日期:  2022-09-28
  • 修回日期:  2022-11-23
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章