Citation: ZHANG Ze-Kun,  JING Xiao-Sheng,  XU Hao,  LI Zhao-Chen,  YAN Wei. Advances in Design and Reaction Mechanism of Copper-based Catalysts for Electrocatalytic Carbon Dioxide Reduction[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(3): 316-330. doi: 10.19756/j.issn.0253-3820.221456 shu

Advances in Design and Reaction Mechanism of Copper-based Catalysts for Electrocatalytic Carbon Dioxide Reduction

  • Corresponding author: XU Hao, xuhao@xjtu.edu.cn
  • Received Date: 15 September 2022
    Revised Date: 8 December 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No. 52270078), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2021JM-012), the Welfare Technology Research Plan of Zhejiang Province (No. LZY21E080003) and the Fundamental Research Funds for the Central Universities (No. xjh012020037).

  • Converting carbon dioxide (CO2) to high-energy chemicals through electrocatalytic CO2 reduction reaction (CO2RR) is a powerful way to solve the greenhouse effect and realize the anthropogenic carbon cycle. Compared with other metal catalysts, copper (Cu)-based catalysts have attracted much attention due to the ability to generate multi-carbon products. However, it has poor selectivity for the products. Hence, efforts have been made in recent years to investigate the mechanism and influencing factors of C—C coupling in the reaction process of Cu-based catalysts, and to carry out targeted structural design and experimental synthesis of Cu-based catalysts. This paper first summarized the basic principles of electrocatalytic CO2RR. Then, the five key factors (electrocatalytic reactor, pH, pressure, temperature, CO2 flow rate and concentration) affecting electrocatalytic CO2RR were summarized. Next, related strategies (alloying, nanostructure modification, heteroatom doping, hydrophilic/hydrophobic and Single atom catalysts) for modification of Cu-based catalysts were reviewed. Finally, the current opportunities and challenges for the preparation of Cu-based catalysts for electrocatalytic CO2RR were prospected, in order to provide valuable insights and ideas for future research in related fields.
  • 加载中
    1. [1]

      SEH Z W, KIBSGAARD J, DICKENS C F, CHORKENDORFF I, NØRSKOV J K, JARAMILLO T F. Science, 2017, 355(6321):eaad4998.

    2. [2]

    3. [3]

      BENSON E E, KUBIAK C P, SATHRUM A J, SMIEJA J M. Chem. Soc. Rev., 2009, 38(1):89-99.

    4. [4]

      SINGH S, NOORI M T, VERMA N. Electrochim. Acta, 2020, 338:135887.

    5. [5]

      HE W, WU X, LI Y, XIONG J, TANG Z, WEI Y, ZHAO Z, ZHANG X, LIU J. Chin. Chem. Lett., 2020, 31(10):2774-2778.

    6. [6]

      XIE F, CHEN R, ZHU X, LIAO Q, YE D, ZHANG B, YU Y, LI J. J. CO2 Util., 2019, 32:31-36.

    7. [7]

      KUMAGAI H, NISHIKAWA T, KOIZUMI H, YATSU T, SAHARA G, YAMAZAKI Y, TAMAKI Y, ISHITANI O. Chem. Sci., 2019, 10(6):1597-1606.

    8. [8]

      DING P, ZHAO H, LI T, LUO Y, FAN G, CHEN G, GAO S, SHI X, LU S, SUN X. J. Mater. Chem. A, 2020, 8(42):21947-21960.

    9. [9]

      BIRDJA Y Y, PÉREZ-GALLENT E, FIGUEIREDO M C, GÖTTLE A J, CALLE-VALLEJO F, KOPER M T M. Nat. Energy, 2019, 4(9):732-745.

    10. [10]

      NITOPI S, BERTHEUSSEN E, SCOTT S B, LIU X, ENGSTFELD A K, HORCH S, SEGER B, STEPHENS I E L, CHAN K, HAHN C, NØRSKOV J K, JARAMILLO T F, CHORKENDORFF I. Chem. Rev., 2019, 119(12):7610-7672.

    11. [11]

      LU Q, ROSEN J, ZHOU Y, HUTCHINGS G S, KIMMEL Y C, CHEN J G, JIAO F. Nat. Commun., 2014, 5:3242.

    12. [12]

      ZHANG B, ZHANG J. J. Energy Chem., 2017, 26(6):1050-1066.

    13. [13]

      HE J, JOHNSON N J J, HUANG A, BERLINGUETTE C P. ChemSusChem, 2018, 11(1):48-57.

    14. [14]

      ZHOU W, CHENG K, KANG J, ZHOU C, SUBRAMANIAN V, ZHANG Q, WANG Y. Chem. Soc. Rev., 2019, 48(12):3193-3228.

    15. [15]

      XIE S, MA W, WU X, ZHANG H, ZHANG Q, WANG Y, WANG Y. Energy Environ. Sci., 2021, 14(1):37-89.

    16. [16]

      JOUNY M, HUTCHINGS G S, JIAO F. Nat. Catal., 2019, 2(12):1062-1070.

    17. [17]

      MA W, HE X, WANG W, XIE S, ZHANG Q, WANG Y. Chem. Soc. Rev., 2021, 50(23):12897-12914.

    18. [18]

      MA W, XIE S, LIU T, FAN Q, YE J, SUN F, JIANG Z, ZHANG Q, CHENG J, WANG Y. Nat. Catal., 2020, 3(6):478-487.

    19. [19]

      OU L, HE Z. Surf. Sci., 2021, 705:121782.

    20. [20]

      CALLE-VALLEJO F, KOPER M T M. Angew. Chem. Int. Ed., 2013, 52(28):7282-7285.

    21. [21]

      CHENG T, XIAO H, GODDARD III W A. Proc. Natl. Acad. Sci. U.S.A., 2017, 114(8):1795-1800.

    22. [22]

      HE J, DETTELBACH K E, SALVATORE D A, LI T, BERLINGUETTE C P. Angew. Chem. Int. Ed., 2017, 56(22):6068-6072.

    23. [23]

      DUFEK E J, LISTER T E, MCILWAIN M E. J. Appl. Electrochem., 2011, 41(6):623-631.

    24. [24]

    25. [25]

    26. [26]

      FAN L, XIA C, YANG F, WANG J, WANG H, LU Y. Sci. Adv., 2020, 6(8):eaay3111.

    27. [27]

    28. [28]

      ZHANG X, LI J, LI Y Y, JUNG Y, KUANG Y, ZHU G, LIANG Y, DAI H. J. Am. Chem. Soc., 2021, 143(8):3245-3255.

    29. [29]

      YIN Z, PENG H, WEI X, ZHOU H, GONG J, HUAI M, XIAO L, WANG G, LU J, ZHUANG L. Energy Environ. Sci., 2019, 12(8):2455-2462.

    30. [30]

      WEI P, LI H, LIN L, GAO D, ZHANG X, GONG H, QING G, CAI R, WANG G, BAO X. Sci. China Chem., 2020, 63(12):1711-1715.

    31. [31]

      HAAS T, KRAUSE R, WEBER R, DEMLER M, SCHMID G. Nat. Catal., 2018, 1(1):32-39.

    32. [32]

      GAO D F, WEI P F, LI H F, LIN L, WANG G X, BAO X H. Acta Phys.-Chim. Sin., 2021, 37(5):2009021.

    33. [33]

      SONG Y, ZHOU Z, ZHANG X, ZHOU Y, GONG H, LV H, LIU Q, WANG G, BAO X. J. Mater. Chem. A, 2018, 6(28):13661-13667.

    34. [34]

      SONG Y, ZHANG X, XIE K, WANG G, BAO X. Adv. Mater., 2019, 31(50):1902033.

    35. [35]

      WANG G, CHEN J, DING Y, CAI P, YI L, LI Y, TU C, HOU Y, WEN Z, DAI L. Chem. Soc. Rev., 2021, 50(8):4993-5061.

    36. [36]

      VARELA A S, KROSCHEL M, LEONARD N D, JU W, STEINBERG J, BAGGER A, ROSSMEISL J, STRASSER P. ACS Energy Lett., 2018, 3(4):812-817.

    37. [37]

      NARAYANARU S, CHINNAIAH J, PHANI K L, SCHOLZ F. Electrochim. Acta, 2018, 264:269-274.

    38. [38]

      ZHU W, CHEN Z, PAN Y, DAI R Y, WU Y, ZHUANG Z B, WANG D S, PENG Q, CHEN C, LI Y D. Adv. Mater., 2019, 31(38):e1800426.

    39. [39]

      SCHOUTEN K J P, PÉREZ GALLENT E, KOPER M T M. J. Electroanal. Chem., 2014, 716:53-57.

    40. [40]

      ZHENG Y, VASILEFF A, ZHOU X, JIAO Y, JARONIEC M, QIAO S Z. J. Am. Chem. Soc., 2019, 141(19):7646-7659.

    41. [41]

      MURATA A, HORI Y. Bull. Chem. Soc. Jpn., 1991, 64(1):123-127.

    42. [42]

      AKHADE S A, MCCRUM I T, JANIK M J. J. Electrochem. Soc., 2016, 163(6):F477-F484.

    43. [43]

      DUNWELL M, LU Q, HEYES J M, ROSEN J, CHEN J G, YAN Y, JIAO F, XU B. J. Am. Chem. Soc., 2017, 139(10):3774-3783.

    44. [44]

      WUTTIG A, YOON Y, RYU J, SURENDRANATH Y. J. Am. Chem. Soc., 2017, 139(47):17109-17113.

    45. [45]

      RAMDIN M, MORRISON A R T, DE GROEN M, VAN HAPEREN R, DE KLER R, VAN DEN BROEKE L J P, TRUSLER J P M, DE JONG W, VLUGT T J H. Ind. Eng. Chem. Res., 2019, 58(5):1834-1847.

    46. [46]

      LI J, KUANG Y, MENG Y, TIAN X, HUNG W H, ZHANG X, LI A, XU M, ZHOU W, KU C S, CHIANG C Y, ZHU G, GUO J, SUN X, DAI H. J. Am. Chem. Soc., 2020, 142(16):7276-7282.

    47. [47]

      KUDO A, NAKAGAWA S, TSUNETO A, SAKATA T. J. Electrochem. Soc., 1993, 140(6):1541-1545.

    48. [48]

      KAS R, KORTLEVER R, YıLMAZ H, KOPER M T M, MUL G. ChemElectroChem, 2015, 2(3):354-358.

    49. [49]

      KIBRIA M G, EDWARDS J P, GABARDO C M, DINH C T, SEIFITOKALDANI A, SINTON D, SARGENT E H. Adv. Mater., 2019, 31(31):1807166.

    50. [50]

      VARELA A S, KROSCHEL M, REIER T, STRASSER P. Catal. Today, 2016, 260:8-13.

    51. [51]

      AHN S T, ABU-BAKER I, PALMORE G T R. Catal. Today, 2017, 288:24-29.

    52. [52]

      ZHANG J, LUO W, ZÜTTEL A. J. Catal., 2020, 385:140-145.

    53. [53]

      KIM H Y, CHOI I, AHN S H, HWANG S J, YOO S J, HAN J, KIM J, PARK H, JANG J H, KIM S K. Int. J. Hydrogen Energy, 2014, 39(29):16506-16512.

    54. [54]

      LEI T, ZHANG X, JUNG J, CAI Y, HOU X, ZHANG Q, QIAO J. Catal. Today, 2018, 318:32-38.

    55. [55]

      CHEN Y, KAN M, YAN S, ZHANG J, LIU K, YAN Y, GUAN A, LV X, QIAN L, ZHENG G. Chin. J. Catal., 2022, 43(7):1703-1709.

    56. [56]

      KIM D, CHOI W, LEE H W, LEE S Y, CHOI Y, LEE D K, KIM W, NA J, LEE U, HWANG Y J, WON D H. ACS Energy Lett., 2021, 6(10):3488-3495.

    57. [57]

      KHOO H H, HALIM I, HANDOKO A D. J. CO2 Util., 2020, 41:101229.

    58. [58]

      MOSALI V S S, ZHANG X, ZHANG Y, GENGENBACH T, GUO S X, PUXTY G, HORNE M D, BOND A M, ZHANG J. ACS Sustainable Chem. Eng., 2019, 7(24):19453-19462.

    59. [59]

      XIE C, NIU Z, KIM D, LI M, YANG P. Chem. Rev., 2020, 120(2):1184-1249.

    60. [60]

      FU X, ZHU A, CHEN X, ZHANG S, WANG M, YUAN M. Chem. Res. Chin. Univ., 2021, 37(6):1328-1333.

    61. [61]

      WANG J, LI Y, ZHAO J, XIONG Z, ZHAO Y, ZHANG J. Catal. Sci. Technol., 2022, 12(11):3454-3463.

    62. [62]

      YU Y, DONG X, CHEN P, GENG Q, WANG H, LI J, ZHOU Y, DONG F. ACS Nano, 2021, 15(9):14453-14464.

    63. [63]

      CHEN H, ZHOU M, WANG T, LI F, ZHANG Y X. J. Mater. Chem. A, 2016, 4(28):10786-10793.

    64. [64]

      ZHANG X D, LIU K, FU J W, LI H M, PAN H, HU J H, LIU M. Front. Phys., 2021, 16(6):63500.

    65. [65]

      SU X, SUN Y, JIN L, ZHANG L, YANG Y, KERNS P, LIU B, LI S, HE J. Appl. Catal., B, 2020, 269:118800.

    66. [66]

      ZHI X, JIAO Y, ZHENG Y, VASILEFF A, QIAO S Z. Nano Energy, 2020, 71:104601.

    67. [67]

      LI Q, FU J, ZHU W, CHEN Z, SHEN B, WU L, XI Z, WANG T, LU G, ZHU J, SUN S. J. Am. Chem. Soc., 2017, 139(12):4290-4293.

    68. [68]

      JIA F, YU X, ZHANG L. J. Power Sources, 2014, 252:85-89.

    69. [69]

      GUO X, ZHANG Y, DENG C, LI X, XUE Y, YAN Y M, SUN K. Chem. Commun., 2015, 51(7):1345-1348.

    70. [70]

      MA S, SADAKIYO M, HEIMA M, LUO R, HAASCH R T, GOLD J I, YAMAUCHI M, KENIS P J A. J. Am. Chem. Soc., 2017, 139(1):47-50.

    71. [71]

      KYRIAKOU G, BOUCHER M B, JEWELL A D, LEWIS E A, LAWTON T J, BABER A E, TIERNEY H L, FLYTZANISTEPHANOPOULOS M, SYKES E C H. Science, 2012, 335(6073):1209-1212.

    72. [72]

      KIM C, DIONIGI F, BEERMANN V, WANG X, MÖLLER T, STRASSER P. Adv. Mater., 2019, 31(31):1805617.

    73. [73]

      YU J, LIU S, MU X, YANG G, LUO X, LESTER E, WU T. Chem. Eng. J., 2021, 419:129656.

    74. [74]

      LOIUDICE A, LOBACCARO P, KAMALI E A, THAO T, HUANG B H, AGER J W, BUONSANTI R. Angew. Chem. Int. Ed., 2016, 55(19):5789-5792.

    75. [75]

      BERSANI M, GUPTA K, MISHRA A K, LANZA R, TAYLOR S F R, ISLAM H U, HOLLINGSWORTH N, HARDACRE C, DE LEEUW N H, DARR J A. ACS Catal., 2016, 6(9):5823-5833.

    76. [76]

      RESKE R, MISTRY H, BEHAFARID F, ROLDAN CUENYA B, STRASSER P. J. Am. Chem. Soc., 2014, 136(19):6978-6986.

    77. [77]

      LAI X, HALPERT J E, WANG D. Energy Environ. Sci., 2012, 5(2):5604-5618.

    78. [78]

      KIM J, CHOI W, PARK J W, KIM C, KIM M, SONG H. J. Am. Chem. Soc., 2019, 141(17):6986-6994.

    79. [79]

      ZHUANG T T, PANG Y, LIANG Z Q, WANG Z, LI Y, TAN C S, LI J, DINH C T, DE LUNA P, HSIEH P L, BURDYNY T, LI H H, LIU M, WANG Y, LI F, PROPPE A, JOHNSTON A, NAM D H, WU Z Y, ZHENG Y R, IP A H, TAN H, CHEN L J, YU S H, KELLEY S O, SINTON D, SARGENT E H. Nat. Catal., 2018, 1(12):946-951.

    80. [80]

      ZHONG D, ZHAO Z, ZHAO Q, CHENG D, LIU B, ZHANG G, DENG W, DONG H, ZHANG L, LI J, LI J, GONG J. Angew. Chem. Int. Ed., 2021, 60(9):4879-4885.

    81. [81]

      FU Y, XIE Q, WU L, LUO J. Chin. J. Catal., 2022, 43(4):1066-1073.

    82. [82]

      ZHANG H, HE C, HAN S, DU Z, WANG L, YUN Q, CAO W, ZHANG B, TIAN Y H, LU Q. Chin. Chem. Lett., 2022, 33(8):3641-3649.

    83. [83]

      HORI Y, WAKEBE H, TSUKAMOTO T, KOGA O. Surf. Sci., 1995, 335:258-263.

    84. [84]

      HORI Y, TAKAHASHI I, KOGA O, HOSHI N. J. Phys. Chem. B, 2002, 106(1):15-17.

    85. [85]

      AJMAL S, YANG Y, TAHIR M A, LI K, BACHA A U R, NABI I, LIU Y, WANG T, ZHANG L. Catal. Sci. Technol., 2020, 10(14):4562-4570.

    86. [86]

      JIANG Y, ZHONG D Z, WANG L, LI J Y, HAO G Y, LI J P, ZHAO Q. Chem-Asian J., 2022, 17:e202200380.

    87. [87]

      JIANG K, HUANG Y, ZENG G, TOMA F M, GODDARD III W A, BELL A T. ACS Energy Lett., 2020, 5(4):1206-1214.

    88. [88]

      QUAN W, LIN Y, LUO Y, HUANG Y. Adv. Sci., 2021, 8(23):2101597.

    89. [89]

      LIU C, GONG J, GAO Z, XIAO L, WANG G, LU J, ZHUANG L. Sci. China Chem., 2021, 64(10):1660-1678.

    90. [90]

      LI H, SHEN Y Y, DU H N, LI J, ZHANG H X, XU C X. Chem. Phys., 2021, 540:111012.

    91. [91]

      XIN Z, YUAN Z, LIU J, WANG X, SHEN K, CHEN Y, LAN Y Q. Chin. Chem. Lett., 2023, 34(4):107458.

    92. [92]

      OU L, LONG W, HUANG J, CHEN Y, JIN J. RSC Adv., 2017, 7(20):11938-11950.

    93. [93]

      SHINAGAWA T, LARRAZÁBAL G O, MARTÍN A J, KRUMEICH F, PÉREZ-RAMÍREZ J. ACS Catal., 2018, 8(2):837-844.

    94. [94]

      EILERT A, CAVALCA F, ROBERTS F S, OSTERWALDER J, LIU C, FAVARO M, CRUMLIN E J, OGASAWARA H, FRIEBEL D, PETTERSSON L G M, NILSSON A. J. Phys. Chem. Lett., 2017, 8(1):285-290.

    95. [95]

      ZHOU Y, CHE F, LIU M, ZOU C, LIANG Z, DE LUNA P, YUAN H, LI J, WANG Z, XIE H, LI H, CHEN P, BLADT E, QUINTERO-BERMUDEZ R, SHAM T K, BALS S, HOFKENS J, SINTON D, CHEN G, SARGENT E H. Nat. Chem., 2018, 10(9):974-980.

    96. [96]

      CHEN C, SUN X, LU L, YANG D, MA J, ZHU Q, QIAN Q, HAN B. Green Chem., 2018, 20(20):4579-4583.

    97. [97]

      KONG X, WANG C, ZHENG H, GENG Z, BAO J, ZENG J. Sci. China Chem., 2021, 64(7):1096-1102.

    98. [98]

      LIANG Z Q, ZHUANG T T, SEIFITOKALDANI A, LI J, HUANG C W, TAN C S, LI Y, DE LUNA P, DINH C T, HU Y, XIAO Q, HSIEH P L, WANG Y, LI F, QUINTERO-BERMUDEZ R, ZHOU Y, CHEN P, PANG Y, LO S C, CHEN L J, TAN H, XU Z, ZHAO S, SINTON D, SARGENT E H. Nat. Commun., 2018, 9(1):3828.

    99. [99]

      SHAO P, CI S, YI L, CAI P, HUANG P, CAO C, WEN Z. ChemElectroChem, 2017, 4(10):2593-2598.

    100. [100]

      BANERJEE S, HAN X, THOI V S. ACS Catal., 2019, 9(6):5631-5637.

    101. [101]

      WAKERLEY D, LAMAISON S, OZANAM F, MENGUY N, MERCIER D, MARCUS P, FONTECAVE M, MOUGEL V. Nat. Mater., 2019, 18(8):1222-1227.

    102. [102]

      LIANG H Q, ZHAO S, HU X M, CECCATO M, SKRYDSTRUP T, DAASBJERG K. ACS Catal., 2021, 11(2):958-966.

    103. [103]

      XU H, REBOLLAR D, HE H, CHONG L, LIU Y, LIU C, SUN C J, LI T, MUNTEAN J V, WINANS R E, LIU D J, XU T. Nat. Energy, 2020, 5(8):623-632.

    104. [104]

      KARAPINAR D, HUAN N T, RANJBAR SAHRAIE N, LI J, WAKERLEY D, TOUATI N, ZANNA S, TAVERNA D, GALVÃO TIZEI L H, ZITOLO A, JAOUEN F, MOUGEL V, FONTECAVE M. Angew. Chem. Int. Ed., 2019, 58(42):15098-15103.

    105. [105]

      WENG Z, WU Y, WANG M, JIANG J, YANG K, HUO S, WANG X F, MA Q, BRUDVIG G W, BATISTA V S, LIANG Y, FENG Z, WANG H. Nat. Commun., 2018, 9(1):415.

    106. [106]

      WANG Y, CHEN Z, HAN P, DU Y, GU Z, XU X, ZHENG G. ACS Catal., 2018, 8(8):7113-7119.

    107. [107]

      LIU L Z, LI M T, CHEN F, HUANG H W. Small Struct., 2022:2200188.

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    3. [3]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    6. [6]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    7. [7]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    8. [8]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    9. [9]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    10. [10]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    11. [11]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    14. [14]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

Metrics
  • PDF Downloads(74)
  • Abstract views(1224)
  • HTML views(287)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return