Citation: LIU Guo-Yong,  SHI Yu,  SUN Jian,  MU Jing. Recent Advances on Fluorescence-based Enzyme Linked Immunosorbent Assay[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(3): 331-339. doi: 10.19756/j.issn.0253-3820.221449 shu

Recent Advances on Fluorescence-based Enzyme Linked Immunosorbent Assay

  • Corresponding author: SUN Jian,  MU Jing, 
  • Received Date: 14 September 2022
    Revised Date: 29 January 2023

    Fund Project: Supported by the National Natural Science Foundation of China (No. 32101074), the Development Project of Science and Technology of Jilin Province, China (No. 20200201091JC) and the Scientific Research Foundation of Peking University Shenzhen Hospital (KYQD202100X).

  • Due to advantages in high-throughput, easy reading, simple operation and low cost, enzyme linked immunosorbent assay (ELISA) plays an important role in environmental monitoring, food safety testing and medical diagnosis. However, the insufficient chromogenic part of ELISA results in high detection limit, which limits the further application of ELISA in analysis and detection. To overcome this issue, the conventional ELISA has been improved by many methods. Among them, the fluorometric method has attracted widespread attention given its high sensitivity, simple operation, and fast response. Recently, a variety of fluorescent materials have been developed to construct different types of ELISA, which promotes the application of ELISA in analytical chemistry and biomedical detection. In this paper, the ELISA constructed by fluorescent materials such as organic small molecules, silicon/carbon nanoparticles, metal nanoclusters, and quantum dots was introduced in detail. Additionally, different enzymes in ELISA, including alkaline phosphatase, horseradish peroxidase and other enzyme as labeling enzymes, were systematically reviewed. Furthermore, the prospects of ELISA based on different fluorescent materials were also discussed.
  • 加载中
    1. [1]

      FU X, CHEN L, CHOO J. Anal. Chem., 2017, 89(1):124-137.

    2. [2]

      SHAO Y, ZHOU H, WU Q, XIONG Y, WANG J, DING Y. Biotechnol. Adv., 2021, 53:107867.

    3. [3]

      ZHAO Q, LU D, ZHANG G, ZHANG D, SHI X. Talanta, 2021, 223:121722.

    4. [4]

      FAN Y, LV M, XUE Y, LI J, WANG E. Anal. Chem., 2021, 93(17):6873-6880.

    5. [5]

      CAO X, KONG F, ZHANG Q, LIU W, LIU X, LI G, ZHONG R, FAN L, XIAO H, CAO C. Lab Chip, 2018, 18(12):1758-1766.

    6. [6]

      ZHAO J, WANG S, LU S, LIU G, SUN J, YANG X. Anal. Chem., 2019, 91(12):7828-7834.

    7. [7]

      ZHAO J, WANG S, LU S, BAO X, SUN J, YANG X. Anal. Chem., 2018, 90(12):7754-7760.

    8. [8]

      PENG C, XUE Y, ZHU X, FAN Y, LI J, WANG E. Anal. Chem., 2022, 94(2):1465-1473.

    9. [9]

      ZHAO D, LI J, PENG C, ZHU S, SUN J, YANG X. Anal. Chem., 2019, 91(4):2978-2984.

    10. [10]

      CHEN C, ZHAO J, LU Y, SUN J, YANG X. Anal. Chem., 2018, 90(5):3505-3511.

    11. [11]

      XIONG L H, HE X, ZHAO Z, KWOK R T K, XIONG Y, GAO P F, YANG F, HUANG Y, SUNG H H Y, WILLIAMS I D, LAM J W Y, CHENG J, ZHANG R, TANG B Z. ACS Nano, 2018, 12(9):9549-9557.

    12. [12]

      GAO Y, ZHOU Y, CHANDRAWATI R. ACS Appl. Nano Mater., 2020, 3(1):1-21.

    13. [13]

      ALEX S A, CHANDRASEKARAN N, MUKHERJEE A. New J. Chem., 2018, 42(19):15852-15859.

    14. [14]

      SUN J, ZHAO J, WANG L, LI H, YANG F, YANG X. ACS Sens., 2018, 3(1):183-190.

    15. [15]

      JIANG C, HUANG Y, HE T, HUANG P, LIN J. Chem. Commun., 2020, 56(36):4942-4945.

    16. [16]

      WU J, WANG X, WANG Q, LOU Z, LI S, ZHU Y, QIN L, WEI H. Chem. Soc. Rev., 2019, 48(4):1004-1076.

    17. [17]

      JIAO L, ZHANG L, DU W, LI H, YANG D, ZHU C. Nanoscale, 2019, 11(18):8798-8802.

    18. [18]

      SONG B, HE Y. Nano Today, 2019, 26:149-163.

    19. [19]

      WALTHER B K, DINU C Z, GULDI D M, SERGEYEV V G, CREAGER S E, COOKE J P, GUISEPPI-ELIE A. Mater. Today, 2020, 39:23-46.

    20. [20]

      CHEN C, ZHAO D, WANG B, NI P, JIANG Y, ZHANG C, YANG F, LU Y, SUN J. Anal. Chem., 2020, 92(6):4639-4646.

    21. [21]

      LIU G, ZHAO J, YAN M, ZHU S, DOU W, SUN J, YANG X. Sci. China Chem., 2020, 63(4):554-560.

    22. [22]

      HESARI M, DING Z. Front. Chem., 2020, 8:580033.

    23. [23]

      DONG B, LI H, SUN J, MARI G M, YU X, KE Y, LI J, WANG Z, YU W, WEN K, SHEN J. Sens. Actuators, B, 2019, 286:214-221.

    24. [24]

      LIU J, RUAN G, MA W, SUN Y, YU H, XU Z, YU C, LI H, ZHANG C, LI L. Biosens. Bioelectron., 2022, 198:113823.

    25. [25]

      DONG B, LI H, MUJTABA MARI G, YU X, YU W, WEN K, KE Y, SHEN J, WANG Z. Food Chem., 2019, 294:347-354.

    26. [26]

      LUO L, SONG Y, ZHU C, FU S, SHI Q, SUN Y M, JIA B, DU D, XU Z L, LIN Y. Sens. Actuators, B, 2018, 255:2742-2749.

    27. [27]

      XU Z L, YE S L, LUO L, HUA X, LAI J X, CAI X P, LIANG Q W, LEI H T, SUN Y M, CHEN Y, SHEN X. Sci. Total Environ., 2020, 708:134614.

    28. [28]

      ZHAN Y, YANG S, LUO F, GUO L, ZENG Y, QIU B, LIN Z. ACS Appl. Mater. Interfaces, 2020, 12(27):30085-30094.

    29. [29]

      CHEN T, LIN H, CAO Y, YAO Q, XIE J. Adv. Mater., 2022, 34(25):e2103918.

    30. [30]

      QING Z, HE X, HE D, WANG K, XU F, QING T, YANG X. Angew. Chem. Int. Ed., 2013, 52(37):9719-9722.

    31. [31]

      SUN J, HU T, XU X, WANG L, YANG X. Nanoscale, 2016, 8(38):16846-16850.

    32. [32]

      LI R, LIU Q, JIN Y, LI B. Sens. Actuators, B, 2019, 281:28-33.

    33. [33]

      LI H, WEN K, DONG B, ZHANG J, BAI Y, LIU M, LI P, MUJTABA M G, YU X, YU W, KE Y, SHEN J, WANG Z. Sens. Actuators, B, 2019, 297:126787.

    34. [34]

    35. [35]

      ZHU N, ZHU Y, WANG J, GYIMAH E, HU X, ZHANG Z. Talanta, 2019, 199:72-79.

    36. [36]

      LI H, JIN R, KONG D, ZHAO X, LIU F, YAN X, LIN Y, LU G. Sens. Actuators, B, 2019, 283:207-214.

    37. [37]

      CHEN Z J, WU H L, SHEN Y D, WANG H, ZHANG Y F, HAMMOCK B, LI Z F, LUO L, LEI H T, XU Z L. J. Hazard. Mater., 2022, 424:127411.

    38. [38]

      LIU Z, WANG X, REN X, LI W, SUN J, WANG X, HUANG Y, GUO Y, ZENG H. Food Chem., 2021, 355:129633.

    39. [39]

      LI H, YAN X, KONG D, SU D, LIU F, SUN P, LIU X, WANG C, JIA X, LU G. Biosens. Bioelectron., 2022, 206:114132.

    40. [40]

      WANG Y, LU M, TANG D. Biosens. Bioelectron., 2018, 109:70-74.

    41. [41]

      WANG X, KONG L, ZHOU S, MA C, LIN W, SUN X, KIRSANOV D, LEGIN A, WAN H, WANG P. Talanta, 2022, 239:122903.

    42. [42]

      ZHANG F, LIU B, SHENG W, ZHANG Y, LIU Q, LI S, WANG S. Food Chem., 2018, 255:421-428.

    43. [43]

      MALASHIKHINA N, GARAI-IBABE G, PAVLOV V. Anal. Chem., 2013, 85(14):6866-6870.

    44. [44]

      CHEN L, LIN J, YI J, WENG Q, ZHOU Y, HAN Z, LI C, CHEN J, ZHANG Q. Anal. Bioanal. Chem., 2019, 411(20):5277-5285.

    45. [45]

      LU T, ZHAN S, ZHOU Y, CHEN X, HUANG X, LENG Y, XIONG Y, XU Y. Anal. Methods, 2018, 10(48):5797-5802.

    46. [46]

      ZHU Y, CHAO J, ZHU F, ZHU N, ZHANG Q, GYIMAH E, YAKUBU S, ZOU Y, ZHANG Z. Anal. Bioanal. Chem., 2020, 412(15):3605-3613.

    47. [47]

      HE S, LI X, GAO J, TONG P, CHEN H. J. Sci. Food Agric., 2018, 98(2):519-526.

    48. [48]

      YU W, JIANG C, XIE B, WANG S, YU X, WEN K, LIN J, WANG J, WANG Z, SHEN J. Anal. Chim. Acta, 2020, 1102:91-98.

    49. [49]

      TONG W, FANG H, XIONG H, WEI D, LENG Y, HU X, HUANG X, XIONG Y. Foods, 2021, 10(10):2429.

  • 加载中
    1. [1]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    2. [2]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    3. [3]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    4. [4]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    5. [5]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    6. [6]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    7. [7]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    8. [8]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    9. [9]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    10. [10]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    11. [11]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    12. [12]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    15. [15]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    16. [16]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    17. [17]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    18. [18]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    19. [19]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    20. [20]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

Metrics
  • PDF Downloads(30)
  • Abstract views(1041)
  • HTML views(155)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return