Citation:
LIU Guo-Yong, SHI Yu, SUN Jian, MU Jing. Recent Advances on Fluorescence-based Enzyme Linked Immunosorbent Assay[J]. Chinese Journal of Analytical Chemistry,
;2023, 51(3): 331-339.
doi:
10.19756/j.issn.0253-3820.221449
-
Due to advantages in high-throughput, easy reading, simple operation and low cost, enzyme linked immunosorbent assay (ELISA) plays an important role in environmental monitoring, food safety testing and medical diagnosis. However, the insufficient chromogenic part of ELISA results in high detection limit, which limits the further application of ELISA in analysis and detection. To overcome this issue, the conventional ELISA has been improved by many methods. Among them, the fluorometric method has attracted widespread attention given its high sensitivity, simple operation, and fast response. Recently, a variety of fluorescent materials have been developed to construct different types of ELISA, which promotes the application of ELISA in analytical chemistry and biomedical detection. In this paper, the ELISA constructed by fluorescent materials such as organic small molecules, silicon/carbon nanoparticles, metal nanoclusters, and quantum dots was introduced in detail. Additionally, different enzymes in ELISA, including alkaline phosphatase, horseradish peroxidase and other enzyme as labeling enzymes, were systematically reviewed. Furthermore, the prospects of ELISA based on different fluorescent materials were also discussed.
-
-
-
[1]
FU X, CHEN L, CHOO J. Anal. Chem., 2017, 89(1):124-137.
-
[2]
SHAO Y, ZHOU H, WU Q, XIONG Y, WANG J, DING Y. Biotechnol. Adv., 2021, 53:107867.
-
[3]
ZHAO Q, LU D, ZHANG G, ZHANG D, SHI X. Talanta, 2021, 223:121722.
-
[4]
FAN Y, LV M, XUE Y, LI J, WANG E. Anal. Chem., 2021, 93(17):6873-6880.
-
[5]
CAO X, KONG F, ZHANG Q, LIU W, LIU X, LI G, ZHONG R, FAN L, XIAO H, CAO C. Lab Chip, 2018, 18(12):1758-1766.
-
[6]
ZHAO J, WANG S, LU S, LIU G, SUN J, YANG X. Anal. Chem., 2019, 91(12):7828-7834.
-
[7]
ZHAO J, WANG S, LU S, BAO X, SUN J, YANG X. Anal. Chem., 2018, 90(12):7754-7760.
-
[8]
PENG C, XUE Y, ZHU X, FAN Y, LI J, WANG E. Anal. Chem., 2022, 94(2):1465-1473.
-
[9]
ZHAO D, LI J, PENG C, ZHU S, SUN J, YANG X. Anal. Chem., 2019, 91(4):2978-2984.
-
[10]
CHEN C, ZHAO J, LU Y, SUN J, YANG X. Anal. Chem., 2018, 90(5):3505-3511.
-
[11]
XIONG L H, HE X, ZHAO Z, KWOK R T K, XIONG Y, GAO P F, YANG F, HUANG Y, SUNG H H Y, WILLIAMS I D, LAM J W Y, CHENG J, ZHANG R, TANG B Z. ACS Nano, 2018, 12(9):9549-9557.
-
[12]
GAO Y, ZHOU Y, CHANDRAWATI R. ACS Appl. Nano Mater., 2020, 3(1):1-21.
-
[13]
ALEX S A, CHANDRASEKARAN N, MUKHERJEE A. New J. Chem., 2018, 42(19):15852-15859.
-
[14]
SUN J, ZHAO J, WANG L, LI H, YANG F, YANG X. ACS Sens., 2018, 3(1):183-190.
-
[15]
JIANG C, HUANG Y, HE T, HUANG P, LIN J. Chem. Commun., 2020, 56(36):4942-4945.
-
[16]
WU J, WANG X, WANG Q, LOU Z, LI S, ZHU Y, QIN L, WEI H. Chem. Soc. Rev., 2019, 48(4):1004-1076.
-
[17]
JIAO L, ZHANG L, DU W, LI H, YANG D, ZHU C. Nanoscale, 2019, 11(18):8798-8802.
-
[18]
SONG B, HE Y. Nano Today, 2019, 26:149-163.
-
[19]
WALTHER B K, DINU C Z, GULDI D M, SERGEYEV V G, CREAGER S E, COOKE J P, GUISEPPI-ELIE A. Mater. Today, 2020, 39:23-46.
-
[20]
CHEN C, ZHAO D, WANG B, NI P, JIANG Y, ZHANG C, YANG F, LU Y, SUN J. Anal. Chem., 2020, 92(6):4639-4646.
-
[21]
LIU G, ZHAO J, YAN M, ZHU S, DOU W, SUN J, YANG X. Sci. China Chem., 2020, 63(4):554-560.
-
[22]
HESARI M, DING Z. Front. Chem., 2020, 8:580033.
-
[23]
DONG B, LI H, SUN J, MARI G M, YU X, KE Y, LI J, WANG Z, YU W, WEN K, SHEN J. Sens. Actuators, B, 2019, 286:214-221.
-
[24]
LIU J, RUAN G, MA W, SUN Y, YU H, XU Z, YU C, LI H, ZHANG C, LI L. Biosens. Bioelectron., 2022, 198:113823.
-
[25]
DONG B, LI H, MUJTABA MARI G, YU X, YU W, WEN K, KE Y, SHEN J, WANG Z. Food Chem., 2019, 294:347-354.
-
[26]
LUO L, SONG Y, ZHU C, FU S, SHI Q, SUN Y M, JIA B, DU D, XU Z L, LIN Y. Sens. Actuators, B, 2018, 255:2742-2749.
-
[27]
XU Z L, YE S L, LUO L, HUA X, LAI J X, CAI X P, LIANG Q W, LEI H T, SUN Y M, CHEN Y, SHEN X. Sci. Total Environ., 2020, 708:134614.
-
[28]
ZHAN Y, YANG S, LUO F, GUO L, ZENG Y, QIU B, LIN Z. ACS Appl. Mater. Interfaces, 2020, 12(27):30085-30094.
-
[29]
CHEN T, LIN H, CAO Y, YAO Q, XIE J. Adv. Mater., 2022, 34(25):e2103918.
-
[30]
QING Z, HE X, HE D, WANG K, XU F, QING T, YANG X. Angew. Chem. Int. Ed., 2013, 52(37):9719-9722.
-
[31]
SUN J, HU T, XU X, WANG L, YANG X. Nanoscale, 2016, 8(38):16846-16850.
-
[32]
LI R, LIU Q, JIN Y, LI B. Sens. Actuators, B, 2019, 281:28-33.
-
[33]
LI H, WEN K, DONG B, ZHANG J, BAI Y, LIU M, LI P, MUJTABA M G, YU X, YU W, KE Y, SHEN J, WANG Z. Sens. Actuators, B, 2019, 297:126787.
-
[34]
-
[35]
ZHU N, ZHU Y, WANG J, GYIMAH E, HU X, ZHANG Z. Talanta, 2019, 199:72-79.
-
[36]
LI H, JIN R, KONG D, ZHAO X, LIU F, YAN X, LIN Y, LU G. Sens. Actuators, B, 2019, 283:207-214.
-
[37]
CHEN Z J, WU H L, SHEN Y D, WANG H, ZHANG Y F, HAMMOCK B, LI Z F, LUO L, LEI H T, XU Z L. J. Hazard. Mater., 2022, 424:127411.
-
[38]
LIU Z, WANG X, REN X, LI W, SUN J, WANG X, HUANG Y, GUO Y, ZENG H. Food Chem., 2021, 355:129633.
-
[39]
LI H, YAN X, KONG D, SU D, LIU F, SUN P, LIU X, WANG C, JIA X, LU G. Biosens. Bioelectron., 2022, 206:114132.
-
[40]
WANG Y, LU M, TANG D. Biosens. Bioelectron., 2018, 109:70-74.
-
[41]
WANG X, KONG L, ZHOU S, MA C, LIN W, SUN X, KIRSANOV D, LEGIN A, WAN H, WANG P. Talanta, 2022, 239:122903.
-
[42]
ZHANG F, LIU B, SHENG W, ZHANG Y, LIU Q, LI S, WANG S. Food Chem., 2018, 255:421-428.
-
[43]
MALASHIKHINA N, GARAI-IBABE G, PAVLOV V. Anal. Chem., 2013, 85(14):6866-6870.
-
[44]
CHEN L, LIN J, YI J, WENG Q, ZHOU Y, HAN Z, LI C, CHEN J, ZHANG Q. Anal. Bioanal. Chem., 2019, 411(20):5277-5285.
-
[45]
LU T, ZHAN S, ZHOU Y, CHEN X, HUANG X, LENG Y, XIONG Y, XU Y. Anal. Methods, 2018, 10(48):5797-5802.
-
[46]
ZHU Y, CHAO J, ZHU F, ZHU N, ZHANG Q, GYIMAH E, YAKUBU S, ZOU Y, ZHANG Z. Anal. Bioanal. Chem., 2020, 412(15):3605-3613.
-
[47]
HE S, LI X, GAO J, TONG P, CHEN H. J. Sci. Food Agric., 2018, 98(2):519-526.
-
[48]
YU W, JIANG C, XIE B, WANG S, YU X, WEN K, LIN J, WANG J, WANG Z, SHEN J. Anal. Chim. Acta, 2020, 1102:91-98.
-
[49]
TONG W, FANG H, XIONG H, WEI D, LENG Y, HU X, HUANG X, XIONG Y. Foods, 2021, 10(10):2429.
-
[1]
-
-
-
[1]
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
-
[2]
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
-
[3]
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
-
[4]
Pengli GUAN , Renhu BAI , Xiuling SUN , Bin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058
-
[5]
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
-
[6]
Lei ZHANG , Cheng HE , Yang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081
-
[7]
Rui TIAN , Duo LI , Yuan REN , Jiamin CHAI , Xuehua SUN , Haoyu LI , Yuecheng ZHANG . Dual-ligand-modified copper nanoclusters: Synthesis and application in ornidazole detection. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1245-1255. doi: 10.11862/CJIC.20240389
-
[8]
Xuehua SUN , Min MA , Jianting LIU , Rui TIAN , Hongmei CHAI , Huali CUI , Loujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294
-
[9]
Rui TIAN , Jiamin CHAI , Junyu CHEN , Yuan REN , Xuehua SUN , Haoyu LI , Yuecheng ZHANG . Chitosan/silica-coated copper nanoclusters: Synthesis and application in cefixime detection. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1903-1915. doi: 10.11862/CJIC.20250026
-
[10]
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
-
[11]
Yingpeng ZHANG , Xingxing LI , Yunshang YANG , Zhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064
-
[12]
Quanliang Chen , Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133
-
[13]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[14]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[15]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[16]
Yu Dai , Xueting Sun , Haoyu Wu , Naizhu Li , Guoe Cheng , Xiaojin Zhang , Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052
-
[17]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[18]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[19]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[20]
Yang Li , Jiachen Li , Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016
-
[1]
Metrics
- PDF Downloads(44)
- Abstract views(1705)
- HTML views(241)