Citation: ZHANG Wen-Hao,  LAN Ying-Jia,  LU Cheng-Hua,  SUN Zi-Yuan,  LU Huan-Jun,  LI Xiao-Hong,  TU Ying-Feng. Application of Nuclear Magnetic Resonance Technology in Component Analysis of Blooming on Rubber Product Surface[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(3): 405-411. doi: 10.19756/j.issn.0253-3820.221376 shu

Application of Nuclear Magnetic Resonance Technology in Component Analysis of Blooming on Rubber Product Surface

  • Corresponding author: LI Xiao-Hong,  TU Ying-Feng, 
  • Received Date: 6 July 2022
    Revised Date: 9 February 2023

    Fund Project: Supported by the National Natural Science Foundation of China (No. 22071167).

  • Scanning electron microscopy (SEM) coupled with energy spectrometry (EDS), quantitative proton nuclear magnetic resonance (1H NMR) and two-dimensional diffusion-ordered spectroscopy (DOSY) techniques were applied to analyze the composition of blooming. The EDS results indicated that the elements in the blooming were carbon, oxygen, sulfur and zinc with the mass ratio of 6∶1∶1∶1. Quantitative 1H NMR combined with DOSY strongly convinced that the main precipitates of the blooming were zinc stearate, zinc dimethyl dithiocarbamate (ZDMC), 2-mercaptobenzothiazole (MBT) and rubber protective wax. Their corresponding mass content ratio was 38.9% : 31.5% : 14.4% : 15.2%, based on which the content ratio of element C, O, S and Zn was estimated as 5.70 ∶0.44 ∶1.28∶1. Then the possible formation mechanism of blooming was proposed. ZnO reacted with S to form ZnS, followed by the reaction of ZnS and stearic acid to generate zinc stearate. Moreover, tetramethyl thiuram disulfide (TMTD) could react with ZnO to produce ZDMC during the vulcanization stage. The DOSY and quantitative 1H NMR spectroscopy were used together for the first time to analyze the components of blooming mixture on the surface of rubber products, which opened a new avenue to analyze unknown mixtures.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

      SHARJ-SHARIFI M, TAGHVAEI-GANJALI S, MOTIEE F. J. Polym. Res., 2020, 23:111-124.

    13. [13]

      WON J S, LEE J M, LEE P G, CHOI H Y, KWAK T J, LEE S G. J. Mater. Sci., 2022, 57(2):1489-1505.

    14. [14]

      ZHONG Z, PENG L, SU J, LUO Z, HAN C C, HUANG X, SU Z. Soft Matter, 2022, 18(45):8605-8612.

    15. [15]

    16. [16]

    17. [17]

    18. [18]

      ZHAO Y, GAO L, LU H, LI X, TU Y, CHANG T. Polymer, 2022, 213:123202.

    19. [19]

      YOU Y L, LI F F, WANG N, WANG S Q. Molecules, 2021, 26(6):1751.

    20. [20]

      ZHAN H, HAO M, FENG Y, CAO S, NI Z, HUANG Y, CHEN Z. J. Phys. Chem. Lett., 2021, 12(3):1073-1080.

    21. [21]

    22. [22]

    23. [23]

    24. [24]

      MONDIN A, BOGIALLI S, VENZO A, FAVARO G, BADOCCO D, PASTORE P. Chemosphere, 2014, 95:379-386.

    25. [25]

      YAN H, HUANG Z, CHEN M, LI C, CHEN Y, GAO M, LEI A. Org. Biomol. Chem., 2017, 15(39):8276-8279.

    26. [26]

      NAGY E M, SITRAN S, MONTOPOLI M, FAVARO M, MARCHIÒ L, CAPARROTTA L, FREGONA D. J. Inorg. Biochem., 2012, 117:131-139.

    27. [27]

      PREGOSIN P S. Magn. Reson. Chem., 2017, 55(5):405-413.

    28. [28]

      MALLOL R, RODRÍGUEZ M A, HERAS M, VINAIXA M, PLANA N, MASANA L, MORRIS G A, CORREIG X. Anal. Bioanal. Chem., 2012, 402(7):2407-2415.

    29. [29]

      GUO C, YARGER J L. Magn. Reson. Chem., 2018, 56(11):1074-1082.

    30. [30]

      GIUBERTONI G, ROMBOUTS G, CAPORALETTI F, DEBLAIS A, DIEST R V, REEK N. H, BONN D, WOUTERSEN S. Angew. Chem. Int. Ed., 2022:e202213424.

    31. [31]

      DENG H, GONG G, LV S, CHEN Y, ZHAO Q, LIU S, CHEN S, WANG L. Org. Chem. Front., 2022, 10(2):317-326.

    32. [32]

      BAKKOUR Y, DARCOS V, LI S, COUDANE J. Polym. Chem., 2012, 3(8):2006.

    33. [33]

      KRUGER F W H, MCGILL W J. J. Appl. Polym. Sci., 1992, 45(9):1545-1556.

    34. [34]

      NIEUWENHUIZEN P J, VAN DUIN M, HAASNOOT J G, REEDIJK J, MCGILL W J. J. Appl. Polym. Sci., 1999, 73(7):1247-1257.

  • 加载中
    1. [1]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    2. [2]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    3. [3]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    4. [4]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    5. [5]

      Haolin Zhan Qiyuan Fang Jiawei Liu Xiaoqi Shi Xinyu Chen Yuqing Huang Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045

    6. [6]

      Haiyang Jin Yonghai Hui Yongfei Zhang Lijun Gao Yun Wang . Application and Exploration of Nuclear Magnetic Resonance Spectrometer in Undergraduate Basic Laboratory Teaching. University Chemistry, 2025, 40(3): 245-250. doi: 10.12461/PKU.DXHX202406022

    7. [7]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    8. [8]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    9. [9]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    10. [10]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    11. [11]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    12. [12]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    13. [13]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    14. [14]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    15. [15]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    16. [16]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    17. [17]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    18. [18]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    19. [19]

      Yumiao Gao Yixin Chen Jiaxin Wei Junjie Yu Yunxia Wang . Guarding the Kingdom: Skin Allies with Sunscreen for Mutual Protection. University Chemistry, 2024, 39(9): 74-80. doi: 10.12461/PKU.DXHX202404149

    20. [20]

      Tao Yang Kaijiao Duan Siyu Li Jing Wei Qingdi Yang Qian Wang . A Comprehensive and Innovative Chemical Experimental Teaching: Extraction and Identification of Tea Polyphenols from Pu'er Tea and the Application in Hand Cream Making. University Chemistry, 2024, 39(8): 270-275. doi: 10.3866/PKU.DXHX202312040

Metrics
  • PDF Downloads(16)
  • Abstract views(1039)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return