Citation: ZHAN Xue-Wang,  LI Peng-Hui,  XU Lin. Determination of 8 Kinds of Benzenes and 17 Kinds of Volatile Halogenated Hydrocarbons in Urine by Headspace-Solid Phase Microextraction/Gas Chromatography-Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(6): 1033-1041. doi: 10.19756/j.issn.0253-3820.221372 shu

Determination of 8 Kinds of Benzenes and 17 Kinds of Volatile Halogenated Hydrocarbons in Urine by Headspace-Solid Phase Microextraction/Gas Chromatography-Mass Spectrometry

  • Corresponding author: LI Peng-Hui,  XU Lin, 
  • Received Date: 24 July 2022
    Revised Date: 7 February 2023

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 22036007, 21876189) and the Youth Innovation Promotion Association, CAS (No. 2018059).

  • A headspace solid-phase microextraction coupled with gas chromatography-mass spectrometric (GCMS) method was developed for analysis of 8 kinds of benzenes (BTEX) and 17 kinds of volatile halogenated hydrocarbons (VHC) in urine samples. The effects of extraction fiber, extraction temperature, extraction time, urine pH, stirring speed and salt effect on the experimental results were investigated by single-factor experiments, followed by the interaction analysis between factors based on the Box-Behnken experimental design principle with the total peak areas of the chromatograms of 25 kinds of target compounds as the response values. The optimized conditions were as follows: 2 mL of urine sample adjusted to pH=4, 40 μL of internal standard (fluorobenzene and chlorobenzene-d5, 500 μg/L) and 0.55 g NaCl were added to a 40-mL headspace vial; 75 μm Carboxen/ polydimethylsiloxane (Carboxen/PDMS) fiber was selected for headspace extraction at 51℃ with stirring speed of 400 r/min for 35 min. The calibration curves showed good linearity (R2 > 0.990) in the range of 0.05-50 μg/L for the 25 kinds of targets, with the detection limits of 0.008-5.780 ng/L and the lower limits of quantification of 0.027-19.268 ng/L. The recoveries of the 25 kinds of stargets ranged from 78.9% to 115.2% and the relative standard deviations were 0.7%-16.2%. The method was applied to determination of urine samples from the healthy population in Lai Yang, Shandong Province. The results showed that 20 kinds of target compounds were detected in 15 human urine samples, with total concentrations ranging from 3.13 to 43.17 μg/L and a median content of 5.78 μg/L. 1,2,4-Trimethylbenzene (1,2,4-TMB) was the compound with the highest median content of BTEX and 1,3-dichlorobenzene (1,3-DCB) was the compound with the highest median content of VHC. The method was sensitive and reproducible for simultaneous determination of BTEX and VHC in urine samples and might provide an important methodological basis for human exposure studies of these two compounds.
  • 加载中
    1. [1]

    2. [2]

      LIN X, XU C, ZHOU Y, LIU S, LIU W. Sci. Total Environ., 2020, 703:134646.

    3. [3]

      YANG S, ZHOU M, WANG B, MU G, WANG X, YUAN J, CHEN W. J. Hazard. Mater., 2020, 389:121889.

    4. [4]

      PAN Y, LIU Q, LIU F F, QIAN G R, XU Z P. Sci. Total Environ., 2011, 409(20):4289-4296.

    5. [5]

      YU B, YUAN Z, YU Z, XUE-SONG F. Chem. Eng. J., 2022, 435:134825.

    6. [6]

      CHAMBERS D M, EDWARDS K C, SANCHEZ E, REESE C M, FERNANDEZ A T, BLOUNT B C, DE JESÚS V R. ACS Omega, 2021, 6(19):12684-12690.

    7. [7]

      AGGARWAL P, BAKER J, BOYD M T, COYLE S, PROBERT C, CHAPMAN E A. Metabolites, 2020, 10(12):482.

    8. [8]

      MESQUITA A D S, ZAMORA-OBANDO H R, DOS SANTOS F N, SCHMIDT-FILHO J, DE LIMA V C, COSTA F D A, DE ANDRADE V P, EBERLIN M N, COLNAGHI SIMIONATO A V. Microchem. J., 2020, 159:105679.

    9. [9]

      CALEJO I, MOREIRA N, ARAÚJO A M, CARVALHO M, BASTOS M L, DE PINHO P G. Talanta, 2016, 148:486-493.

    10. [10]

      RAFIEE A, DELGADO-SABORIT J M, SLY P D, AMIRI H, HOSEINI M. Sci. Total Environ., 2019, 656:540-546.

    11. [11]

      TSANGARI X, ANDRIANOU X D, AGAPIOU A, MOCHALSKI P, MAKRIS K C. Chemosphere, 2017, 173:261-266.

    12. [12]

      QIN N, ZHU Y, ZHONG Y, TIAN J, LI J, CHEN L, FAN R, WEI F. Int. J. Environ. Res. Public Health, 2022, 19(2):847.

    13. [13]

      POLI D, MANINI P, ANDREOLI R, FRANCHINI I, MUTTI A. J. Chromatogr. B, 2005, 820(1):95-102.

    14. [14]

      FURUKI K, UKAI H, OKAMOTO S, TAKADA S, KAWAI T, MIYAMA Y, MITSUYOSHI K, ZHANG Z W, HIGASHIKAWA K, IKEDA M. Int. Arch. Occup. Environ. Health, 2000, 73(4):221-227.

    15. [15]

      SAKAI T, MORITA Y, WAKUI C. J. Chromatogr. B, 2002, 778(1-2):245-250.

    16. [16]

    17. [17]

      ERB A, MARSAN P, BURGART M, REMY A, LAMBERT-XOLIN A M, JEANDEL F, HANSER O, ROBERT A. J. Chromatogr. B, 2019, 1125:121724.

    18. [18]

      MESQUITA A D, ZAMORA-OBANDO H R, DOS SANTOS F N, SCHMIDT-FILHO J, DE LIMA V C, COSTA F D, DE ANDRADE V P, EBERLIN M N, SIMIONATO A V. Microchem. J., 2020, 159:105479.

    19. [19]

      DRABINSKA N, STAROWICZ M, KRUPA-KOZAK U. J. Anal. Chem., 2020, 75(6):792-801.

    20. [20]

      WANG D, WANG C, PI X, GUO L, WANG Y, LI M, FENG Y, LIN Z, HOU W, LI E. Biomed. Rep., 2016, 5(1):68-72.

    21. [21]

      TAUNK K, TAWARE R, MORE T H, PORTO-FIGUEIRA P, PEREIRA J A M, MOHAPATRA R, SONEJI D, CÂMARA J S, NAGARAJARAM H A, RAPOLE S. RSC Adv., 2018, 8(44):25040-25050.

    22. [22]

    23. [23]

      MONTEIRO M, CARVALHO M, HENRIQUE R, JERÓNIMO C, MOREIRA N, BASTOS M D, DE PINHO P G. Eur. J. Cancer, 2014, 50(11):1993-2002.

    24. [24]

    25. [25]

    26. [26]

      WANG M, ZHONG Y, QIN J, ZHANG Z, LI S, YANG B. Food Chem., 2017, 227:329-334.

    27. [27]

    28. [28]

      FUSTINONI S, ROSSELLA F, CAMPO L, MERCADANTE R, BERTAZZI P A. Sci. Total Environ., 2010, 408(14):2840- 2849.

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    3. [3]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    4. [4]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    5. [5]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    6. [6]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    7. [7]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    8. [8]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    9. [9]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    10. [10]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    11. [11]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    12. [12]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    15. [15]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    16. [16]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    17. [17]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    18. [18]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    19. [19]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    20. [20]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

Metrics
  • PDF Downloads(18)
  • Abstract views(3792)
  • HTML views(155)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return