Citation: SHI Lu-Lu,  HONG Huan-Huan,  CHEN An-Qi,  TANG Yan,  ZHANG Tao,  WEN Lu-Hong,  ZHAO Peng. Automatic in Situ Mass Spectrometry Analysis System Based on Pulsed Direct Current Electrospray Ionization and Its Application[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(3): 348-355. doi: 10.19756/j.issn.0253-3820.221368 shu

Automatic in Situ Mass Spectrometry Analysis System Based on Pulsed Direct Current Electrospray Ionization and Its Application

  • Corresponding author: WEN Lu-Hong,  ZHAO Peng, 
  • Received Date: 21 July 2022
    Revised Date: 26 November 2022

    Fund Project: Supported by the National Key Research and Development Program (No. 2018YFC16000600), the Zhejiang Province Welfare Technology Applied Research Project (No. 2020C02023), the Ningbo City Major Scientific and Technological Program of China (No. 20211ZDYF020179) and the Preferred Postdoctoral Research Projects Foundation of Zhejiang Province (No. ZJ2021003).

  • Pulsed direct current electrospray ionization mass spectrometry (PDESI-MS) offers many advantages such as in situ, real-time, fast, and microvolume sample analysis. However, the current PDESI-MS system requires manual operation for sample processing and mass spectrometry injection, which have many disadvantages such as cumbersome operation, many steps, large errors and low accuracy. Herein, a high-throughput, fully automated and integrated PDESI-MS system was developed, and an in situ detection for small molecule metabolites in eukaryotes (single bladder cancer cells) and prokaryotes (single colonies of bacteria) was explored. The results showed that the automated PDESI-MS system could effectively detect metabolites of different strains and realize the classification and stereotyping of different types of Escherichia coli. In addition, the picoliter droplet generation technology allowed it to be applied to single cell detection. The automated PDESI-MS system could achieve high precision, high density, high repeatability and high automation for in situ sample extraction, especially in detection and analysis of small samples, and showed great application potential and development prospects in food safety, regenerative medicine, drug screening, clinical treatment and other fields.
  • 加载中
    1. [1]

      BRANTON A, TRIVEDI M K, TRIVEDI D, JANA S. Org. Med. Chem. Int. J., 2021, 10(3):97-104.

    2. [2]

      VINAIXA M, SCHYMANSKI E L, NEUMANN S, NAVARRO M, SALEK R M, YANES O. TrAC, Trends Anal. Chem., 2016, 78:23-35.

    3. [3]

      TAKYI-WILLIAMS J, LIU C F, TANG K. Bioanalysis, 2015, 7(15):1901-1923.

    4. [4]

      RANDALL E C, BUNCH J, COOPER H J. Anal. Chem., 2014, 86(21):10504-10510.

    5. [5]

    6. [6]

      TAYLOR M J, LUKOWSKI J K, ANDERTON C R. J. Am. Soc. Mass Spectrom., 2021, 32(4):872-894.

    7. [7]

      PATIL S G, PATIL M P, MAHESHWARI V L, PATIL R H. Endophytes. Springer, Singapore, 2021:177-193.

    8. [8]

      HSU C C, CHOU P T, ZARE R N. Anal. Chem., 2015, 87(22):11171-11175.

    9. [9]

      GRIFFITHS R L, RANDALL E C, RACE A M, BUNCH J, COOPER H J. Anal. Chem., 2017, 89(11):5683-5687.

    10. [10]

      KOCUREK K I, HAVLIKOVA J, BUCHAN E, TANNER A, MAY R C, COOPER H J. Anal. Chem., 2020, 92(3):2605-2611.

    11. [11]

      GRIFFITHS R L, SISLEY E K, LOPEZ-CLAVIJO A F, SIMMONDS A L, STYLES I B, COOPER H J. Int. J. Mass Spectrom., 2017, 437:23-29.

    12. [12]

      WEI Z, XIONG X, GUO C, SI X, ZHAO Y, HE M, YANG C, XU W, TANG F, FANG X, ZHANG S, ZHANG X. Anal. Chem., 2015, 87(22):11242-11248.

    13. [13]

      ZHANG X C, ZANG Q, ZHAO H, MA X, PAN X, FENG J, ZHANG S, ZHANG R, ABLIZ Z, ZHANG X. Anal. Chem., 2018, 90(16):9897-9903.

    14. [14]

    15. [15]

      ONJIKO R M, MORRIS S E, MOODY S A, NEMES P. Analyst, 2016, 141(12):3648-3656.

    16. [16]

      KOMURO N, TAKAKI S, SUZUKI K, CITTERIO D. Anal. Bioanal. Chem., 2013, 405(17):5785-5805.

    17. [17]

      GROSS A, SCHÖNDUBE J, NIEKRAWITZ S, STREULE W, RIEGGER L, ZENGERLE R, KOLTAY P. SLAS Tech., 2013, 18(6):504-518.

    18. [18]

      BASU S S, RANDALL E C, REGAN M S, LOPEZ B G C, CLARK A R, SCHMITT N D, AGAR J N, DILLON D A, AGAR N Y R. Anal. Chem., 2018, 90(8):4987-4991.

    19. [19]

      ZONG L, PI Z, LIU S, XING J, LIU Z, SONG F. Rapid Commun. Mass Spectrom., 2018, 32(19):1683-1692.

    20. [20]

      YAO H, ZHAO H, ZHAO X, PAN X, FENG J, XU F, ZHANG S, ZHANG X. Anal. Chem., 2019, 91(15):9777-9783.

    21. [21]

      ZHANG X C, WEI Z W, GONG X Y, SI X Y, ZHAO Y Y, YANG C D, ZHANG S C, ZHANG X R. Sci. Rep., 2016, 6:24730.

    22. [22]

      FENG J, ZHANG X, HUANG L, YAO H, YANG C, MA X, ZHANG S, ZHANG X. Anal. Chem., 2019, 91(9):5613-5620.

    23. [23]

      WANG R, ZHAO H, ZHANG X, ZHAO X, SONG Z, OUYANG J. Anal. Chem., 2019, 91(5):3667-3674.

    24. [24]

      CHEN A, YAN M, FENG J, BI L, CHEN L, HU S, HONG H, SHI L, LI G, JIN B, ZHANG X, WEN L. IEEE Trans. Biomed. Eng., 2021, 69(1):325-333.

    25. [25]

    26. [26]

      BROCKMANN E U, POTTHOFF A, TORTORELLA S, SOLTWISCH J, DREISEWERD K. J. Am. Soc. Mass Spectrom., 2021, 32(4):1053-1064.

  • 加载中
    1. [1]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    2. [2]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    3. [3]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    4. [4]

      Yi Fan Zhuoqi Jiang Zhipeng Li Xuan Zhou Jingan Lin Laiying Zhang Xu Hou . 偶极诱导液体门控可视化物质检测——化学“101计划”表界面性质应用实验新设计. University Chemistry, 2025, 40(8): 265-271. doi: 10.12461/PKU.DXHX202410061

    5. [5]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    6. [6]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    7. [7]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    8. [8]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    9. [9]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    10. [10]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    11. [11]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    12. [12]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    13. [13]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    15. [15]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Liangjun Chen Yu Zhang Zhicheng Zhang Yongwu Peng . AI-Empowering Reform in University Chemistry Education: Practical Exploration of Cultivating Informationization and Intelligent Literacy. University Chemistry, 2025, 40(9): 220-227. doi: 10.12461/PKU.DXHX202503124

    17. [17]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    18. [18]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    19. [19]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    20. [20]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

Metrics
  • PDF Downloads(21)
  • Abstract views(1262)
  • HTML views(176)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return