Citation: SHI Lu-Lu,  HONG Huan-Huan,  CHEN An-Qi,  TANG Yan,  ZHANG Tao,  WEN Lu-Hong,  ZHAO Peng. Automatic in Situ Mass Spectrometry Analysis System Based on Pulsed Direct Current Electrospray Ionization and Its Application[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(3): 348-355. doi: 10.19756/j.issn.0253-3820.221368 shu

Automatic in Situ Mass Spectrometry Analysis System Based on Pulsed Direct Current Electrospray Ionization and Its Application

  • Corresponding author: WEN Lu-Hong,  ZHAO Peng, 
  • Received Date: 21 July 2022
    Revised Date: 26 November 2022

    Fund Project: Supported by the National Key Research and Development Program (No. 2018YFC16000600), the Zhejiang Province Welfare Technology Applied Research Project (No. 2020C02023), the Ningbo City Major Scientific and Technological Program of China (No. 20211ZDYF020179) and the Preferred Postdoctoral Research Projects Foundation of Zhejiang Province (No. ZJ2021003).

  • Pulsed direct current electrospray ionization mass spectrometry (PDESI-MS) offers many advantages such as in situ, real-time, fast, and microvolume sample analysis. However, the current PDESI-MS system requires manual operation for sample processing and mass spectrometry injection, which have many disadvantages such as cumbersome operation, many steps, large errors and low accuracy. Herein, a high-throughput, fully automated and integrated PDESI-MS system was developed, and an in situ detection for small molecule metabolites in eukaryotes (single bladder cancer cells) and prokaryotes (single colonies of bacteria) was explored. The results showed that the automated PDESI-MS system could effectively detect metabolites of different strains and realize the classification and stereotyping of different types of Escherichia coli. In addition, the picoliter droplet generation technology allowed it to be applied to single cell detection. The automated PDESI-MS system could achieve high precision, high density, high repeatability and high automation for in situ sample extraction, especially in detection and analysis of small samples, and showed great application potential and development prospects in food safety, regenerative medicine, drug screening, clinical treatment and other fields.
  • 加载中
    1. [1]

      BRANTON A, TRIVEDI M K, TRIVEDI D, JANA S. Org. Med. Chem. Int. J., 2021, 10(3):97-104.

    2. [2]

      VINAIXA M, SCHYMANSKI E L, NEUMANN S, NAVARRO M, SALEK R M, YANES O. TrAC, Trends Anal. Chem., 2016, 78:23-35.

    3. [3]

      TAKYI-WILLIAMS J, LIU C F, TANG K. Bioanalysis, 2015, 7(15):1901-1923.

    4. [4]

      RANDALL E C, BUNCH J, COOPER H J. Anal. Chem., 2014, 86(21):10504-10510.

    5. [5]

    6. [6]

      TAYLOR M J, LUKOWSKI J K, ANDERTON C R. J. Am. Soc. Mass Spectrom., 2021, 32(4):872-894.

    7. [7]

      PATIL S G, PATIL M P, MAHESHWARI V L, PATIL R H. Endophytes. Springer, Singapore, 2021:177-193.

    8. [8]

      HSU C C, CHOU P T, ZARE R N. Anal. Chem., 2015, 87(22):11171-11175.

    9. [9]

      GRIFFITHS R L, RANDALL E C, RACE A M, BUNCH J, COOPER H J. Anal. Chem., 2017, 89(11):5683-5687.

    10. [10]

      KOCUREK K I, HAVLIKOVA J, BUCHAN E, TANNER A, MAY R C, COOPER H J. Anal. Chem., 2020, 92(3):2605-2611.

    11. [11]

      GRIFFITHS R L, SISLEY E K, LOPEZ-CLAVIJO A F, SIMMONDS A L, STYLES I B, COOPER H J. Int. J. Mass Spectrom., 2017, 437:23-29.

    12. [12]

      WEI Z, XIONG X, GUO C, SI X, ZHAO Y, HE M, YANG C, XU W, TANG F, FANG X, ZHANG S, ZHANG X. Anal. Chem., 2015, 87(22):11242-11248.

    13. [13]

      ZHANG X C, ZANG Q, ZHAO H, MA X, PAN X, FENG J, ZHANG S, ZHANG R, ABLIZ Z, ZHANG X. Anal. Chem., 2018, 90(16):9897-9903.

    14. [14]

    15. [15]

      ONJIKO R M, MORRIS S E, MOODY S A, NEMES P. Analyst, 2016, 141(12):3648-3656.

    16. [16]

      KOMURO N, TAKAKI S, SUZUKI K, CITTERIO D. Anal. Bioanal. Chem., 2013, 405(17):5785-5805.

    17. [17]

      GROSS A, SCHÖNDUBE J, NIEKRAWITZ S, STREULE W, RIEGGER L, ZENGERLE R, KOLTAY P. SLAS Tech., 2013, 18(6):504-518.

    18. [18]

      BASU S S, RANDALL E C, REGAN M S, LOPEZ B G C, CLARK A R, SCHMITT N D, AGAR J N, DILLON D A, AGAR N Y R. Anal. Chem., 2018, 90(8):4987-4991.

    19. [19]

      ZONG L, PI Z, LIU S, XING J, LIU Z, SONG F. Rapid Commun. Mass Spectrom., 2018, 32(19):1683-1692.

    20. [20]

      YAO H, ZHAO H, ZHAO X, PAN X, FENG J, XU F, ZHANG S, ZHANG X. Anal. Chem., 2019, 91(15):9777-9783.

    21. [21]

      ZHANG X C, WEI Z W, GONG X Y, SI X Y, ZHAO Y Y, YANG C D, ZHANG S C, ZHANG X R. Sci. Rep., 2016, 6:24730.

    22. [22]

      FENG J, ZHANG X, HUANG L, YAO H, YANG C, MA X, ZHANG S, ZHANG X. Anal. Chem., 2019, 91(9):5613-5620.

    23. [23]

      WANG R, ZHAO H, ZHANG X, ZHAO X, SONG Z, OUYANG J. Anal. Chem., 2019, 91(5):3667-3674.

    24. [24]

      CHEN A, YAN M, FENG J, BI L, CHEN L, HU S, HONG H, SHI L, LI G, JIN B, ZHANG X, WEN L. IEEE Trans. Biomed. Eng., 2021, 69(1):325-333.

    25. [25]

    26. [26]

      BROCKMANN E U, POTTHOFF A, TORTORELLA S, SOLTWISCH J, DREISEWERD K. J. Am. Soc. Mass Spectrom., 2021, 32(4):1053-1064.

  • 加载中
    1. [1]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    2. [2]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    3. [3]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    4. [4]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    5. [5]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    6. [6]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    11. [11]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    12. [12]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    13. [13]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    14. [14]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    15. [15]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    16. [16]

      Chengxia Tong Yajie Li Jin Yan Xuejian Qu Shigang Wei Yong Fan Zhiguang Song Yupeng Guo . The Construction and Practice of a Comprehensive and Three-Dimensional Practical Education Model. University Chemistry, 2024, 39(7): 49-55. doi: 10.12461/PKU.DXHX202404155

    17. [17]

      Xu Liu Chengfang Liu Jie Huang Xiangchun Li Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021

    18. [18]

      Ruming Yuan Laiying Zhang Xiaoming Xu Pingping Wu Gang Fu . Application of Mathematica in Visualizing Physical Chemistry Formulas. University Chemistry, 2024, 39(8): 375-382. doi: 10.3866/PKU.DXHX202401030

    19. [19]

      Dongxia Zhang Sijia Hao Jiarui Wang Jiwei Wang Xiaogang Dong Liang Jiao . Construction and Reflection on the Safety Management of Hazardous Chemicals in University Laboratories. University Chemistry, 2024, 39(10): 229-235. doi: 10.12461/PKU.DXHX202403078

    20. [20]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

Metrics
  • PDF Downloads(19)
  • Abstract views(735)
  • HTML views(102)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return