Citation: WANG Dong-Ze,  WANG Yu-Xuan,  JIA Qiong. Application of Hypercrosslinked Polymers in Sample Pretreatment and Chromatographic Separation[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(10): 1435-1443. doi: 10.19756/j.issn.0253-3820.221363 shu

Application of Hypercrosslinked Polymers in Sample Pretreatment and Chromatographic Separation

  • Corresponding author: JIA Qiong, jiaqiong@jlu.edu.cn
  • Received Date: 20 July 2022
    Revised Date: 17 August 2022

    Fund Project: Supported by the Science and Technology Planning Project of Changchun, China (No.21ZGN35)

  • Hypercrosslinked polymers (HCPs) are a kind of porous organic polymers built from aromatic compounds via Friedel-Crafts acylation. Due to their excellent chemical stability, extremely high specific surface area, adjustable pore size, simple synthesis condition and easy functionalization, HCPs have shown great potential in sample pretreatment and chromatographic separation. In this article, the application and progress of HCPs in solid phase extraction (SPE), magnetic solid phase extraction (MSPE), solid phase microextraction (SPME), high performance liquid chromatography (HPLC) and gas chromatography (GC) are systematically reviewed. In the end, the outlook about the application of HCPs in separation science is prospected.
  • 加载中
    1. [1]

      WANG X P, LI H, QUAN K J, ZHAO L, QIU H D, LI Z G. Talanta, 2021, 225:121987.

    2. [2]

      CHEN J, GONG Z J, TANG W Y, ROW K H, QIU H D. TrAC, Trends Anal. Chem., 2021, 134:116131.

    3. [3]

    4. [4]

    5. [5]

      WANG H Q, LI Z, FENG W, JIA Q. New J. Chem., 2017, 41(21):13043-13050.

    6. [6]

      LI X M, XIONG H L, JIA Q. ACS Appl. Mater. Interfaces, 2019, 11(49):46205-46211.

    7. [7]

    8. [8]

      TAN J, CHEN W J, GUO J. Chin. Chem. Lett., 2016, 27(8):1405-1411.

    9. [9]

      LI X M, PENG Y, JIA Q. Sep. Purif. Technol., 2020, 236:116260.

    10. [10]

      HAN L X, PENG Y, MA J T, SHI Z, JIA Q. Sep. Purif. Technol., 2022, 285:120378.

    11. [11]

      LI X M, CHEN G, XU H, JIA Q. Sep. Purif. Technol., 2019, 228:115739.

    12. [12]

      SU Y, WANG Z M, LEGRAND A, AOYAMA T, MA N, WANG W T, OTAKE K, URAYAMA K, HORIKE S, KITAGAWA S, FURUKAWA S, GU C. J. Am. Chem. Soc., 2022, 144(15):6861-6870.

    13. [13]

    14. [14]

      WANG D Z, CHEN G, LI X M, JIA Q. Sep. Purif. Technol., 2019, 227:115720.

    15. [15]

      WANG D Z, LI X M, JIN X Q, JIA Q. Sep. Purif. Technol., 2019, 216:9-15.

    16. [16]

      RUEPING M, NACHTSHEIM B J. Beilstein J. Org. Chem., 2010, 6:6.

    17. [17]

      DAVANKOV V A, TSYURUPA M P. React. Polym., 1990, 13(1):27-42.

    18. [18]

      VEVERKA P, JERABEK K. React. Funct. Polym., 2004, 59(1):71-79.

    19. [19]

      FONTANALS N, MARCE R M, BORRULL F, CORMACK P A G. Polym. Chem., 2015, 6(41):7231-7244.

    20. [20]

      TAN L X, TAN B E. Chem. Soc. Rev., 2017, 46(11):3322-3356.

    21. [21]

      XU S J, LUO Y L, TAN B E. Macromol. Rapid Commun., 2013, 34(6):471-484.

    22. [22]

      HUANG J, TURNER S R. Polym. Rev., 2018, 58(1):1-41.

    23. [23]

      HE M, OU X X, WANG Y X, CHEN Z N, LI D D, CHEN B B, HU B. J. Chromatogr. A, 2020, 1609:460477.

    24. [24]

      DAVANKOV V A, ROGOZHIN S V, TSYURUPA M P. US Patent, 3729457, 1973.

    25. [25]

      GERMAIN J, FRECHET J M J, SVEC F. J. Mater. Chem., 2007, 17(47):4989-4997.

    26. [26]

      SVEC F, GERMAIN J, FRECHET J M J. Small, 2009, 5(10):1098-1111.

    27. [27]

      CJURUPA M P, LALAEV V V, DAVANKOV V A. Acta Polym., 1984, 35(6):451-455.

    28. [28]

      TSYURUPA M P, DAVANKOV V A. React. Funct. Polym., 2002, 53(2-3):193-203.

    29. [29]

      WU D C, HUI C M, DONG H C, PIETRASIK J, RYU H J, LI Z H, ZHONG M J, HE H K, KIM E K, JARONIEC M, KOWALEWSKI T, MATYJASZEWSKI K. Macromolecules, 2011, 44(15):5846-5849.

    30. [30]

      AZANOVA V V, HRADIL J. React. Funct. Polym., 1999, 41(1-3):163-175.

    31. [31]

      WOOD C D, TAN B E, TREWIN A, NIU H J, BRADSHAW D, ROSSEINSKY M J, KHIMYAK Y Z, CAMPBELL N L, KIRK R, STOECKEL E, COOPER A I. Chem. Mater., 2007, 19(8):2034-2048.

    32. [32]

      WOOD C D, TAN B E, TREWIN A, SU F, ROSSEINSKY M J, BRADSHAW D, SUN Y, ZHOU L, COOPER A I. Adv. Mater., 2008, 20(10):1916-1921.

    33. [33]

      LUO Y L, ZHANG S C, MA Y X, WANG W, TAN B E. Polym. Chem., 2013, 4(4):1126-1131.

    34. [34]

      LI B Y, GUAN Z H, YANG X J, WANG W D, WANG W, HUSSAIN I, SONG K, TAN B E, LI T. J. Mater. Chem. A, 2014, 2(30):11930-11939.

    35. [35]

      LI B Y, GONG R N, WANG W, HUANG X, ZHANG W, LI H M, HU C X, TAN B E. Macromolecules, 2011, 44(8):2410-2414.

    36. [36]

      TAN L X, LI B Y, YANG X J, WANG W X, TAN B E. Polymer, 2015, 70:336-342.

    37. [37]

      WANG H J, PAN L L, DENG W X, YANG G J, LIU X K. Polym. J., 2016, 48(7):787-792.

    38. [38]

      BHUNIA S, BANERJEE B, BHAUMIK A. Chem. Commun., 2015, 51(24):5020-5023.

    39. [39]

      ZHANG X W, YANG Y X, QIN P G, HAN L Z, ZHU W L, DUAN S F, LU M H, CAI Z W. Chin. Chem. Lett., 2022, 33(2):903-906.

    40. [40]

      YU Q W, LIU S J, ZHENG F, XIAO H M, GUAN H Y, FENG Y Q. Chin. Chem. Lett., 2020, 31(2):482-486.

    41. [41]

      KHAYAMBASHI A, CHEN L, DONG X, LI K, WANG Z P, HE L W, ANNAM S, CHEN L X, WANG Y X, SHERIDAN M V, XU C, WANG S A. Chin. Chem. Lett., 2022, 33(7):3429-3434.

    42. [42]

      FONTANALS N, MARC R M, BORRULL F. TrAC, Trends Anal. Chem., 2005, 24(5):394-406.

    43. [43]

      FONTANALS N, CORTES J, GALI M, MARCE R M, CORMACK P A G, BORRULL F, SHERRINGTON D C. J. Polym. Sci., Part A:Polym. Chem., 2005, 43(8):1718-1728.

    44. [44]

      FONTANALS N, GALIA M, CORMACK P A, MARCE R M, SHERRINGTON D C, BORRULL F. J. Chromatogr. A, 2005, 1075(1-2):51-56.

    45. [45]

      BRATKOWSKA D, FONTANALS N, BORRULL F, CORMACK P A, SHERRINGTON D C, MARCE R M. J. Chromatogr. A, 2010, 1217(19):3238-3243.

    46. [46]

      WU J J, MA R Y, HAO L, WANG C, WU Q H, WANG Z. J. Chromatogr. A, 2017, 1520:48-57.

    47. [47]

      WANG Q Q, ZHANG L H, HAO L, WANG C, WU Q H, WANG Z. J. Chromatogr. A, 2018, 1575:18-25.

    48. [48]

      LIANG X Y, WANG J T, WU Q H, WANG C, WANG Z. J. Chromatogr. A, 2018, 1538:1-7.

    49. [49]

      WANG Q Q, WANG C, WANG J M, LIU W H, HAO L, ZHOU J H, WANG Z, WU Q H. Food Chem., 2020, 317:126410.

    50. [50]

      LIU W H, WANG J T, LIU J J, HOU F Y, WU Q H, WANG C, WANG Z. J. Chromatogr. A, 2020, 1628:461470.

    51. [51]

      XU M M, WANG J M, ZHANG L H, WANG Q Q, LIU W H, AN Y J, HAO L, WANG C, WANG Z, WU Q H. J. Hazard. Mater., 2022, 429:128288.

    52. [52]

      LI A M, ZHANG Q X, ZHANG G C, CHEN J L, FEI Z H, LIU F Q. Chemosphere, 2002, 47(9):981-989.

    53. [53]

      DAVANKOV V, PAVLOVA L, TSYURUPA M, BRADY J, BALSAMO M, YOUSHA E. J. Chromatogr. B, 2000, 739(1):73-80.

    54. [54]

      LI Z B, HUANG D N, FU C, WEI B W, YU W J, DENG C H, ZHANG X M. J. Chromatogr. A, 2011, 1218(37):6232-6239.

    55. [55]

      QI H, LI Z, ZHENG H J, FU L, JI Q. Chin. Chem. Lett., 2019, 30(12):2181-2185.

    56. [56]

      QI H, JIANG L Y, JIA Q. Chin. Chem. Lett., 2021, 32(9):2629-2636.

    57. [57]

      LAURENT S, FORGE D, PORT M, ROCH A, ROBIC C, ELST L V, MULLER R N. Chem. Rev., 2008, 108(6):2064-2110.

    58. [58]

      GAO Q, LIN C Y, LUO D, SUO L L, CHEN J L, FENG Y Q. J. Sep. Sci., 2011, 34(21):3083-3091.

    59. [59]

      GUBIN A, SUKHANOV P, KUSHNIR A, SANNIKOVA N, KONOPLEVA V, NIKULINA A. J. Sep. Sci., 2021, 44(9):1978-1988.

    60. [60]

      WANG Q Q, WU J J, HAO L, WU Q H, WANG C, WANG Z. J. Sep. Sci., 2018, 41(16):3285-3293.

    61. [61]

      GAO T, WANG J M, HAO L, YANG X M, WANG C, WU Q H, WANG Z. Microchim. Acta, 2018, 185(12):554.

    62. [62]

      JIANG D D, LI Z, JIA Q. Microchim. Acta, 2019, 186(8):510.

    63. [63]

      WU M X, CHEN G, MA J T, LIU P, JIA Q. Talanta, 2016, 161:350-358.

    64. [64]

      GUO H H, SONG N Z, WANG D Z, MA J T, JIA Q. Talanta, 2019, 198:277-283.

    65. [65]

      GUO H H, CHEN G, MA J T, JIA Q. Microchim. Acta, 2019, 186(1):4.

    66. [66]

      LIU S Q, CHEN D R, ZHENG J, ZENG L W, JIANG J J, JIANG R F, ZHU F, SHEN Y, WU D C, OUYANG G F. Nanoscale, 2015, 7(40):16943-16951.

    67. [67]

      WANG W C, WANG W J, ZHANG S H, LI Z, WANG C, WANG Z. J. Chromatogr. A, 2018, 1556:47-54.

    68. [68]

      LIU S Q, HU Q K, ZHENG J, XIE L J, WEI S B, JIANG R F, ZHU F, LIU Y, OUYANG G F. J. Chromatogr. A, 2016, 1450:9-16.

    69. [69]

      MAYA F, SVEC F. Polymer, 2014, 55(1):340-346.

    70. [70]

      ZHOU Y F, ZHENG H J, MA J T, JIA Q. J. Sep. Sci., 2017, 40(7):1548-1555.

    71. [71]

      WANG H Q, ZHANG H H, WEI S G, JIA Q. J. Chromatogr. A, 2018, 1566:23-31.

    72. [72]

    73. [73]

      URBAN J, SVEC F, FRECHET J M. Anal. Chem., 2010, 82(5):1621-1623.

    74. [74]

      URBAN J, SVEC F, FRECHET J M. J. Chromatogr. A, 2010, 1217(52):8212-8221.

    75. [75]

      MAYA F, SVEC F. J. Chromatogr. A, 2013, 1317:32-38.

    76. [76]

      LV Y, LIN Z, SVEC F. Anal. Chem., 2012, 84(20):8457-8460.

    77. [77]

      KANATEVA A Y, KOROLEV A A, KURGANOV A A. J. Sep. Sci., 2021, 44(24):4395-4401.

    78. [78]

      LU C M, LIU S Q, XU J Q, DING Y J, OUYANG G F. Anal. Chim. Acta, 2016, 902:205-211.

  • 加载中
    1. [1]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    2. [2]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    3. [3]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    4. [4]

      Zufeng Qiu Jie Ouyang Yiru Wang Hengting Yang Xin Liao Chi Zhang Xuanyao Jiang Shunliu Deng Zhiwei Lin . 综合运用分析仪器解析“盲盒”样品——未知物的剖析. University Chemistry, 2025, 40(6): 296-302. doi: 10.12461/PKU.DXHX202405167

    5. [5]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    6. [6]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    7. [7]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    8. [8]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    9. [9]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    10. [10]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    11. [11]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    12. [12]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    15. [15]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    16. [16]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    17. [17]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    18. [18]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    19. [19]

      Houjin Li Lin Wu Xingwen Sun Yuan Zheng Zhanxiang Liu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Chromatography Experiments. University Chemistry, 2025, 40(5): 93-105. doi: 10.12461/PKU.DXHX202408100

    20. [20]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

Metrics
  • PDF Downloads(21)
  • Abstract views(676)
  • HTML views(135)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return