Citation: LI Ting-Ting,  HE Yue-Yue,  ZHANG Jing-Jing,  QIN Fang-Ling,  LI Cong,  CHEN Bang,  SHEN Ye-Hua. Proteomics and Organic Acid Metabolic Pathways in Amygdalus Pedunculata Pall Leaves at Different Growth Periods[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(1): 72-83. doi: 10.19756/j.issn.0253-3820.221323 shu

Proteomics and Organic Acid Metabolic Pathways in Amygdalus Pedunculata Pall Leaves at Different Growth Periods

  • Corresponding author: SHEN Ye-Hua, yhshen@nwu.edu.cn
  • Received Date: 30 June 2022
    Revised Date: 25 September 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.21675125) and the Shaanxi Provincial Science and Technology Program (Nos.2018ZDXM-NY-087, 2019TSLNY03-02).

  • Based on proteomic analysis, the changes of protein species, content and metabolic pathway in the leaves of Amygdalus pedunculata Pall at different growth periods were investigated and clarified. The results showed that 6584 credible proteins were detected by tandem mass tags (TMT) labeled quantitative proteomics, and 1678 differential proteins were screened. The results of GO functional enrichment showed that the differential proteins participated in the biological processes such as defense response and response to biological stimulation, and mainly had molecular functions such as signal receptor activity, protein phosphatase inhibitor activity, glutathione transferase activity and glutathione dehydrogenase (ascorbic acid) activity.The content of organic acids in Amygdalus pedunculata Pall leaves decreased gradually from flowering stage to fruit ripening stage. Lyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that it was mainly related to α-linolenic acid metabolism, glyoxylic acid and dicarboxylic acid metabolism and carbon fixation in photosynthetic organisms. Traumatic acid, ketoglutarate, malic acid, citric acid and 12 related proteins played important roles in the metabolic process of organic acids in the leaves of Amygdalus pedunculata Pall at different growth stages.
  • 加载中
    1. [1]

      LI C, YANG J Z, YAO L, QIN F L, HOU G F, CHEN B, JIN L H, DENG J J, SHEN Y H. Food Chem., 2020, 311:125888.

    2. [2]

      SHU Y, MARUYAMA J, IWASAKI S, SHEN Y H, UYAMA H. Bull. Chem. Soc. Jpn., 2017, 90(12):1333-1336.

    3. [3]

      LI W C, DING Y, ZHANG W Q, SHU Y, ZHANG L, YANG F C, SHEN Y H, LI W. J. Taiwan Inst. Chem. Eng., 2016, 64:166-172.

    4. [4]

      YAN J, SHEN Y H, WANG Y Y, LUAN X, GUO M M, LI C. J. Appl. Bot. Food Qual., 2016, 89:135-141.

    5. [5]

      GAO Y, LI C, CHEN B, SHEN Y H, HAN J, ZHAO M G. Food Funct., 2016, 7(12):5018-5024.

    6. [6]

      LU C R, LI H Y, LI C, CHEN B, SHEN Y H. Food Chem. Toxicol., 2018, 119:368-374.

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

      SUN Z, CHEN D, HU L Y, ZHAO Y N, LIN Z, LI X Z, DAI W D. Food Res. Int., 2022, 157:111397.

    12. [12]

      LIU C, YU Q, LI Z, JIN X, XING W. Plant Physiol. Biochem., 2020, 155:938-951.

    13. [13]

    14. [14]

    15. [15]

    16. [16]

    17. [17]

      TAYLOR J, KING R D, ALTMANN T, FIEHN O. Bioinformatics, 2002, 18(Suppl 2):241-248.

    18. [18]

      SHENG J Y, WANG S Q, LIU K H, ZHU B, ZHANG Q Y, QIN L P, WU J J. Chin. J. Nat. Med., 2020, 18(6):401-416.

    19. [19]

      FAMIANI F, BONGHI C, CHEN Z H, DRINCOVICH M F, FARINELLI D, LARA M V, PROIETTI S, ROSATI A, VIZZOTTO G, WALKER R P. Front. Plant Sci., 2020, 11:572601.

    20. [20]

      MOSCATELLO S, FRIONI T, BLASI F, PROIETTI S, POLLINI L, VERDUCCI G, ROSATI A, WALKER R P, BATTUISTELLI A, COSSIGNANI L, FAMIANI F. Foods, 2019, 8(10):486.

    21. [21]

      OSORIO S, SCOSSA F, FERNIE A. Front. Plant Sci., 2013, 4:198.

    22. [22]

      FAMIANI F, FARINELLI D, MOSCATELLO S, BATTISTELLI A, LEEGOOD R C, WALKER R P. Plant Physiol. Biochem., 2016, 101:33-42.

    23. [23]

      HE Y Y, PAN L, YANG T, WANG W, LI C, CHEN B, SHEN Y H. Front. Plant Sci., 2021, 12:648277.

    24. [24]

      JIANG X Y, BOMGARDEN R, BROWN J, DREW D L, ROBITAILLE A M, VINER R, HUHMER A R. J. Proteome Res., 2017, 16(11):4244-4252.

    25. [25]

      LI J M, CAI Z Y, BOMGARDEN R D, PIKE I, KUHN K, ROGERS J C, ROBERTS T M, GYGI S P, PAULO J A. J. Proteome Res., 2021, 20(5):2964-2972.

    26. [26]

      XU D Q, ZHU X Y, REN J, HUANG S, XIAO Z W, JIANG H, TAN Y J. J. Proteomics, 2022, 252:104453.

    27. [27]

      YAN S S, GONG S D, SUN K X, LI J W, ZHANG H M, FAN J S, GONG Z P, ZHANG Z X, YAN C. Front. Plant Sci., 2022, 13:997557.

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    3. [3]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    4. [4]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    5. [5]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    6. [6]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    7. [7]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    8. [8]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    9. [9]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    10. [10]

      Houjin Li Lin Wu Xingwen Sun Yuan Zheng Zhanxiang Liu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Chromatography Experiments. University Chemistry, 2025, 40(5): 93-105. doi: 10.12461/PKU.DXHX202408100

    11. [11]

      Yi-Lin Xie Jian-Ji Zhong Qing-Xiao Tong Jing-Xin Jian . Exploring “Magic Teaching” as a Means to Integrate Organic Chemistry Experiments with the “Industry-University-Research” Model. University Chemistry, 2025, 40(5): 252-260. doi: 10.12461/PKU.DXHX202407024

    12. [12]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    15. [15]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    16. [16]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    19. [19]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    20. [20]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

Metrics
  • PDF Downloads(10)
  • Abstract views(747)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return