Citation: HUANG Zhi-Feng,  JIA Wen-Yan,  YUAN Li-Ming. Three Kinds of Chiral Covalent Organic Frameworks Used as Stationary Phases for Gas Chromatography[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(3): 436-444. doi: 10.19756/j.issn.0253-3820.221309 shu

Three Kinds of Chiral Covalent Organic Frameworks Used as Stationary Phases for Gas Chromatography

  • Corresponding author: YUAN Li-Ming, yuan_limingpd@126.com
  • Received Date: 23 June 2022
    Revised Date: 22 February 2023

    Fund Project: Supported by the National Natural Science Foundation of China (No. 22174125).

  • Chiral covalent organic frameworks (CCOFs) have important applications in many fields such as asymmetric catalysis and chiral recognition. Chiral separation has become one of the most important applications of CCOFs due to its convenience, rapidity and high efficiency. To further develop the application value of CCOFs in chromatographic chiral separation, three kinds of CCOFs were obtained by post-synthetic modification method, e.g. L-valine was modified on covalent organic frameworks (COFs) TpPa(NH2)2, L-isoleucine was modified on COFs TpPa(NH2)2 and TpBD(NH2)2, respectively. The three CCOFs were used as gas chromatography chiral stationary phases(CSPs), and mixed with polysiloxane OV-1701 at a mass ratio of 3∶7 to prepare a 4.5 mg/mL coating solution. Three capillary chromatographic columns were prepared by dynamic coating method for chiral separation and analysis. The results showed that the chromatographic columns coated with three kinds of CCOFs had good chiral selectivity and repeatability, which could be used for rapid separation of 25 kinds of chiral compounds such as amino acids, alcohols, aldehydes, esters, ethers, acids and ketones, as well as n-alkanes, n-alkanols, aromatic mixtures and Grob mixtures. Among them, the three CCOFs had wide chiral selectivity and good complementarity in gas chromatography chiral separation, which broadened the range of CCOFs used as gas chromatography CSPs to separate chiral compounds to some extent. This study provided an example of the synthesis of CCOFs by postsynthetic modification, expanded the application of COFs in the field of chiral separation, and showed that CCOFs as a new CSPs had a good application prospect in chromatographic chiral separation.
  • 加载中
    1. [1]

    2. [2]

      WARD T J, WARD K D. Anal. Chem., 2012, 84(2):626-635.

    3. [3]

    4. [4]

      DOBÓ M, FOROUGHBAKHSHFASAEI M, HORVÁTH P, SZABÓ Z I, TÓTH G. J. Chromatogr. A, 2022, 1662:462741.

    5. [5]

      ZHANG J, XIE S, YUAN L. J. Sep. Sci., 2022, 45(1):51-77.

    6. [6]

      BETZENBICHLER G, HUBER L, KRÄH S, MORKOS M-K, SIEGLE A F, TRAPP O. Chirality, 2022, 34(5):732-759.

    7. [7]

      GUS'KOV V Y, MAISTRENKO V N. J Anal. Chem., 2018, 73(10):937-945.

    8. [8]

      SCHURIG V. J. Chromatog. A, 1994, 666(1-2):111-129.

    9. [9]

      SCHURIG V. J. Chromatogr. A, 2001, 906(1-2):275-299.

    10. [10]

      XIE S M, CHEN X X, ZHANG J H, YUAN L M. TrAC, Trends Anal. Chem., 2020, 124:115808.

    11. [11]

      FRANK H, GRAEME J N, BAYER E. Angew. Chem., Int. Ed., 1978, 17(5):363-365.

    12. [12]

      KEIM W, KOHNES A, MELTZOW W, ROMER H. J. Sep. Sci., 1991, 14(8):507-529.

    13. [13]

      NIE M Y, ZHOU L M, WANG Q H, ZHU D Q. Chromatographia, 2000, 51(11-12):736-740.

    14. [14]

    15. [15]

      LI Y X, FU S G, ZHANG J H, XIE S M, LI L, HE Y Y, ZI M, YUAN L M. J. Chromatogr. A, 2018, 1557:99-106.

    16. [16]

      TANG B, ZHANG X, GENG L, SUN L, LUO A. J. Chromatogr. A, 2021, 1636:461792.

    17. [17]

      WANG Z, XIONG W, HUANG Z, QIN G, ZI M, YUAN L. Chirality, 2022, 34(3):462-472.

    18. [18]

      XIE S M, ZHANG Z J, WANG Z Y, YUAN L M. J. Am. Chem. Soc., 2011, 133(31):11892-11895.

    19. [19]

      SCHURIG V. Angew. Chem., Int. Ed., 1984, 23(10):747-765.

    20. [20]

      DING J, WELTON T, ARMSTRONG D W. Anal. Chem., 2004, 76(22):6819-6822.

    21. [21]

      YUAN L M, HAN Y, ZHOU Y, MENG X, LI Z Y, ZI M, CHANG Y X. Anal. Lett., 2006, 39(7):1439-1449.

    22. [22]

    23. [23]

      HAN X, YUAN C, HOU B, LIU L, LI H, LIU Y, CUI Y. Chem. Soc. Rev., 2020, 49(17):6248-6272.

    24. [24]

      ZHANG J, HAN X, WU X, LIU Y, CUI Y. J. Am. Chem. Soc., 2017, 139(24):8277-8285.

    25. [25]

      QIAN H L, YANG C X, YAN X P. Nat. Commun., 2016, 7:12104.

    26. [26]

      YUAN C, JIA W, YU Z, LI Y, ZI M, YUAN L M, CUI Y. J. Am. Chem. Soc., 2022, 144(2):891-900.

    27. [27]

      GUO J X, YANG C, YAN X P. J. Mater. Chem. A, 2021, 9(37):21151-21157.

    28. [28]

      TANG B, WANG W, HOU H, LIU Y, LIU Z, GENG L, SUN L, LUO A. Chin. Chem. Lett., 2022, 33(2):898-902.

    29. [29]

      YUAN C, FU S, YANG K, HOU B, LIU Y, JIANG J, CUI Y. J. Am. Chem. Soc., 2021, 143(1):369-381.

    30. [30]

      KANG X, STEPHENS E R, SPECTOR-WATTS B M, LI Z, LIU Y, LIU L, CUI Y. Chem. Sci., 2022, 13(34):9811-9832.

    31. [31]

      CHONG J H, SAUER M, PATRICK B O, MACLACHLAN M J. Org. Lett., 2003, 5(21):3823-3826.

    32. [32]

      CHANDRA S, KANDAMBETH S, BISWAL B P, LUKOSE B, KUNJIR S M, CHAUDHARY M, BABARAO R, HEINE T, BANERJEE R. J. Am. Chem. Soc., 2013, 135(47):17853-17861.

    33. [33]

      LOHSE M S, STASSIN T, NAUDIN G, WUTTKE S, AMELOOT R, DE VOS D, MEDINA D D, BEIN T. Chem. Mater., 2016, 28(2):626-631.

    34. [34]

      BONNEFOY J, LEGRAND A, QUADRELLI E A, CANIVET J, FARRUSSENG D. J. Am. Chem. Soc., 2015, 137(29):9409-9416.

    35. [35]

      KOU W T, YANG C X, YAN X P. J. Mater. Chem. A, 2018, 6(37):17861-17866.

    36. [36]

      ZHANG J H, XIE S M, CHEN L, WANG B J, HE P G, YUAN L M. Anal. Chem., 2015, 87(15):7817-7824.

    37. [37]

      IDREES K B, LI Z, XIE H, KIRLIKOVALI K O, KAZEM-ROSTAMI M, WANG X, WANG X, TAI T Y, ISLAMOGLU T, STODDART J F, SNURR R Q, FARHA O K. J. Am. Chem. Soc., 2022, 144(27):12212-12218.

    38. [38]

      WANG W, ZHANG Y, TANG B, HOU H, TANG S, LUO A. J. Chromatogr. A, 2022, 1675:463150.

  • 加载中
    1. [1]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    4. [4]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    5. [5]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    6. [6]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    7. [7]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    8. [8]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    9. [9]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    10. [10]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    11. [11]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    14. [14]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    15. [15]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    20. [20]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

Metrics
  • PDF Downloads(14)
  • Abstract views(805)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return