Citation: LIU Li,  XU Bin,  SONG Jia-Zhuo,  ZHANG Zhi-Min,  HONG Li-Hua. Controllable Construction of Biomimetic Chitosan-based Hydrogels and[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(10): 1520-1532. doi: 10.19756/j.issn.0253-3820.221286 shu

Controllable Construction of Biomimetic Chitosan-based Hydrogels and

  • Corresponding author: ZHANG Zhi-Min,  HONG Li-Hua, 
  • Received Date: 10 June 2022
    Revised Date: 28 July 2022

    Fund Project: Supported by the Jilin Province Science and Technology Development Plan (No.20200404184YY).

  • Biomimetic chitosan hydrogels (CS-GNPs) with controllable physical and chemical properties for inducing periodontal tissue regeneration were prepared by performing a nucleophilic substitution reaction on the ester group of the natural protein crosslinker genipine (GNP) with polyglucine (1-4)-2-amino-β-D glucose (chitosan, CS) as the matrix under acidic conditions. The structure and morphology of the materials were characterized, and the mechanical properties, porosity, swelling rate, and degradation rate of the material were detected. The cytotoxicities of the materials were evaluated by the viability detection of mice fibroblasts (L-929) in vitro. The effects of the materials on the biological behavior of pluripotent stem cells were analyzed by observing the proliferation rate of periodontal ligament stem cells (hPDLSCs) and detecting mRNA expression levels of periodontal ligament-related genes PLAP-1, COL1, SCX and POSTN by qPCR. The experimental results showed that CS-GNP with different physicochemical characteristics could be obtained by changing the ratio of GNP. The mechanical signals of the materials affected the biological behaviors of pluripotent stem cells and changing the elastic modulus of the materials could regulate the extension area and proliferation rates of stem cells. When the material's modulus of elasticity was (46.02±15.7) kPa, which was close to the normal periodontal ligament extracellular matrix, the differentiation of hPDLSCs could be induced to the direction of the periodontal ligament. The results verified that the physical signals of the stem cell microenvironment could regulate the fate and differentiation of cells, and the simulation of natural extracellular matrix hardness could greatly regulate the directional differentiation of pluripotent stem cells, providing feasible model materials and systems for analyzing and characterizing the influence of the cell microenvironment on stem cell behavior.
  • 加载中
    1. [1]

      BENOIT D S, SCHWARTZ M P, DURNEY A R, ANSETH K S. Nat. Mater., 2008, 7(10):816-823.

    2. [2]

      GRAFAHREND D, HEFFELS K H, BEER M V, GASTEIER P, MÖLLER M, BOEHM G, DALTON P D, GROLL J. Nat. Mater., 2011, 10(1):67-73.

    3. [3]

      ENGLER A J, SEN S, SWEENEY H L, DISCHER D E. Cell, 2006, 126(4):677-689.

    4. [4]

      DALBY M J, GADEGAARD N, TARE R, ANDAR A, RIEHLE M O, HERZYK P, WILKINSON C D, OREFFO R O. Nat. Mater., 2007, 6(12):997-1003.

    5. [5]

      DE BELLY H, PALUCH E K, CHALUT K J. Nat. Rev. Mol. Cell Biol., 2022, 23(7):465-480.

    6. [6]

      VINING K H, MOONEY D J. Nat. Rev. Mol. Cell. Biol., 2017, 18(12):728-742.

    7. [7]

      CHAUDHURI O, GU L, KLUMPERS D, DARNELL M, BENCHERIF S A, WEAVER J C, HUEBSCH N, LEE H P, LIPPENS E, DUDA G N, MOONEY D J. Nat. Mater., 2016, 15(3):326-334.

    8. [8]

      CHAUDHURI O, COOPER-WHITE J, JANMEY P A, MOONEY D J, SHENOY V B. Nature, 2020, 584(7822):535-546.

    9. [9]

      DHAND A P, GALARRAGA J H, BURDICK J A. Trends Biotechnol., 2021, 39(5):519-538.

    10. [10]

      BRANCO D A CUNHA C, KLUMPERS D D, LI W A, KOSHY S T, WEAVER J C, CHAUDHURI O, GRANJA P L, MOONEY D J. Biomaterials, 2014, 35(32):8927-8936.

    11. [11]

      XU J J, SUN M Y, TAN Y, WANG H W, WANG H P, LI P D, XU Z R, XIA Y H, LI L S, LI Y L. Differentiation, 2017, 96:30-39.

    12. [12]

      HER G J, WU H C, CHEN M H, CHEN M Y, CHANG S C, WANG T W. Acta Biomater., 2013, 9(2):5170-5180.

    13. [13]

      ROTH J G, HUANG M S, LI T L, FEIG V R, JIANG Y, CUI B, GREELY H T, BAO Z, PAŞCA S P, HEILSHORN S C. Nat. Rev. Neurosci., 2021, 22(10):593-615.

    14. [14]

      FLOREN M, BONANI W, DHARMARAJAN A, MOTTA A, MIGLIARESI C, TAN W. Acta Biomater., 2016, 31:156-166.

    15. [15]

      SULLIVAN K E, QUINN K P, TANG K M, GEORGAKOUDI I, BLACK L D. Stem Cell Res. Ther., 2014, 5:14.

    16. [16]

      SHARMA R I, SNEDEKER J G. Biomaterials, 2010, 31(30):7695-7704.

    17. [17]

      HSIEH W T, LIU Y S, LEE Y H, RIMANDO M G, LIN K H, LEE O K. Acta Biomater., 2016, 32:210-222.

    18. [18]

      SUN M Y, CHI G F, XU J J, TAN Y, XU J Y, LV S, XU Z R, XIA Y H, LI L S, LI Y L. Stem Cell Res. Ther., 2018, 9:52.

    19. [19]

      RAPE A D, GUO W H, WANG Y L. Biomaterials, 2011, 32(8):2043-2051.

    20. [20]

      SUN M Y, CHI G F, LI P D, LV S, XU J J, XU Z R, XIA Y H, TAN Y, XU J Y, LI L S, LI Y L. Int. J. Med. Sci., 2018, 15(3):257-268.

    21. [21]

      YI B, XU Q, LIU W. Bioact. Mater., 2022, 15:82-102.

    22. [22]

      LABOUESSE C, TAN B X, AGLEY C C, HOFER M, WINKEL A K, STIRPARO G G, STUART H T, VERSTREKEN C M, MULAS C, MANSFIELD W, BERTONE P, FRANZE K, SILVA J C R, CHALUT K J. Nat. Commun., 2021, 12(1):6132.

    23. [23]

      TING M S, TRAVAS-SEJDIC J, MALMSTRÖM J. J. Mater. Chem. B, 2021, 9(37):7578-7596.

    24. [24]

    25. [25]

      MORELLO G, QUARTA A, GABALLO A, MORONI L, GIGLI G, POLINI A, GERVASO F. Carbohydr. Polym., 2021, 274:118633.

    26. [26]

      LOU C Q, TIAN X Z, DENG H B, WANG Y X, JIANG X. Carbohydr. Polym., 2020, 231:115678.

    27. [27]

      LU H T, LU T W, CHEN C H, MI F L. Int. J. Biol. Macromol., 2019, 128:973-984.

    28. [28]

      LAU Y T, KWOK L F, TAM K W, CHAN Y S, SHUM D K, SHEA G K. Colloids Surf. B. Biointerfaces, 2018, 162:126-134.

    29. [29]

      SEO B M, MIURA M, GRONTHOS S, BARTOLD P M, BATOULI S, BRAHIM J, YOUNG M, ROBEY P G,WANG C Y, SHI S. Lancet, 2004, 364(9429):149-155.

    30. [30]

    31. [31]

      MOURA M J, FANECA H, LIMA M P, GIL M H, FIGUEIREDO M M. Biomacromolecules, 2011, 12(9):3275-3284.

    32. [32]

    33. [33]

      ANDERSON S M, MCLEAN W H, ELLIOTT R J. Biochem. Soc. Trans., 1991, 19(1):48s.

    34. [34]

      ZHOU L, FAN L, ZHANG F M, JIANG Y H, CAI M, DAI C, LUO Y A, TU L J, ZHOU Z N, LI X J, NING C Y, ZHENG K, BOCCACCINI A R, TAN G X. Bioact. Mater., 2021, 6(3):890-904.

    35. [35]

      JIN H H, KIM D H, KIM T W, SHIN K K, JUNG J S, PARK H C, YOON S Y. Int. J. Biol. Macromol., 2012, 51(5):1079-1085.

    36. [36]

      LIEN S M, KO L Y, HUANG T J. Acta Biomater., 2009, 5(2):670-679.

    37. [37]

      MAREW T, BIRHANU G. Regen.Ther., 2021, 18:102-111.

    38. [38]

      LI H, WU C W, WANG S, ZHANG W. Mater. Lett., 2020, 266:127504.

    39. [39]

      MASTROGIACOMO M, SCAGLIONE S, MARTINETTI R, DOLCINI L, BELTRAME F, CANCEDDA R, QUARTO R. Biomaterials, 2006, 27(17):3230-3237.

    40. [40]

      HONG Y, SONG H Q, GONG Y H, MAO Z W, GAO C Y, SHEN J C. Acta Biomater., 2007, 3(1):23-31.

    41. [41]

      MAHONEY M J, ANSETH K S. Biomaterials, 2006, 27(10):2265-2274.

    42. [42]

      MEINEL L, HOFMANN S, KARAGEORGIOU V, ZICHNER L, LANGER R, KAPLAN D, VUNJAK-NOVAKOVIC G. Biotechnol.Bioeng., 2004, 88(3):379-391.

    43. [43]

      ALSBERG E, KONG H J, HIRANO Y, SMITH M K, ALBEIRUTI A, MOONEY D J. J. Dent. Res., 2003, 82(11):903-908.

    44. [44]

      SWIFT J, IVANOVSKA I L, BUXBOIM A, HARADA T, DINGAL P C, PINTER J, PAJEROWSKI J D, SPINLER K R, SHIN J W, TEWARI M, REHFELDT F, SPEICHER D W, DISCHER D E. Science, 2013, 341(6149):1240104.

    45. [45]

      SONG G S, ZHAO Z Y, PENG X, HE C C, WEISS R A, WANG H L. Macromolecules, 2016, 49(21):8265-8273.

    46. [46]

      HAO J, ZHANG Y L, JING D, SHEN Y, TANG G, HUANG S S, ZHAO Z H. Acta Biomater., 2015, 20:1-9.

    47. [47]

      FOLKMAN J, MOSCONA A. Nature, 1978, 273(5661):345-349.

    48. [48]

      CHEN C S, MRKSICH M, HUANG S, WHITESIDES G M, INGBER D E. Science, 1997, 276(5317):1425-1428.

    49. [49]

      WATT F M, JORDAN P W, O'NEILL C H. Proc. Natl. Acad. Sci. U. S. A., 1988, 85(15):5576-5580.

    50. [50]

      KREEGER P K, STRONG L E, MASTERS K S. Annu. Rev. Biomed. Eng., 2018, 20:49-72.

  • 加载中
    1. [1]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    2. [2]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    3. [3]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    4. [4]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    5. [5]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    8. [8]

      Zhen Shen Yi Wang Chen Lin Kin Shing Chan . 南京大学化学生物学专业本科生有机化学英文教学经验. University Chemistry, 2025, 40(6): 43-47. doi: 10.12461/PKU.DXHX202407083

    9. [9]

      Xinyan Chen Meng Xiao Fei Cai Junxian Guo Tianfeng Chen Li Ma . Transformation of Scientific Research Achievements Facilitating the Construction of Experimental Courses in Frontier Interdisciplinary Disciplines: A Case of “Comprehensive Experiments in Chemical Biology”. University Chemistry, 2025, 40(7): 373-379. doi: 10.12461/PKU.DXHX202408105

    10. [10]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    11. [11]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    12. [12]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    13. [13]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    14. [14]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    15. [15]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    16. [16]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    17. [17]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    18. [18]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    19. [19]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    20. [20]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

Metrics
  • PDF Downloads(9)
  • Abstract views(583)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return