Citation: XU Jing-Wen,  SONG Yan-Yan. Fast Detection of Biomarker in Exhaled Breath Based on Surface-enhanced Raman Scattering Barcodes[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(11): 1765-1768. doi: 10.19756/j.issn.0253-3820.221266 shu

Fast Detection of Biomarker in Exhaled Breath Based on Surface-enhanced Raman Scattering Barcodes

  • Corresponding author: XU Jing-Wen, xujingwen@mail.neu.edu.cn
  • Received Date: 26 May 2022
    Revised Date: 26 June 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.22074013).

  • Volatile organic compounds (VOCs) in exhaled breath have "fingerprint" feature, thus can be used as disease markers for early cancer diagnosis. Surface-enhanced Raman scattering (SERS) has a rapid response speed, and it is anti-interference to water molecules. However, the application of SERS for detection of disease markers in exhaled breath is faced with two major challenges: the low detection sensitivity caused by the high mobility of gas molecules and the high misdiagnosis rate induced by detection of single biomarker. Recently, on Angewandte Chemie-International Edition, Professor TIAN Yang from East China Normal University used Cu-doped p-n heterojunction semiconductor with spongy-like structure as SERS substrate. By combining with Raman barcodes, the proposed SERS platform was applied to detect multiple biomarkers in human exhaled breath simultaneously for diagnosis of lung cancer with high sensitivity, providing a new strategy for the early diagnosis of cancers.
  • 加载中
    1. [1]

      BELLUOMO I, BOSHIER P R, MYRIDAKI A, VADHWANA B, MARKAR S R, SOANEL P, HANNA G B. Nat. Protoc., 2021, 16:3419-3438.

    2. [2]

      BROZA Y Y, ZHOU X, YUAN M M, QU D Y, ZHENG Y B, VISHINKIN R, KHATIB M, WU W W, HAICK H. Chem. Rev., 2019, 119(22):11761-11817.

    3. [3]

      DJAGO F, LANGE J, POINOT P. Nat. Rev. Chem., 2021, 5:183-196.

    4. [4]

      HANNA G B, BOSHIER P R, MARKAR S R, ROMANO A. JAMA Oncol., 2019, 5:1070.

    5. [5]

      LI Z, FANG M, LAGASSE M K, ASKIM J R, SUSLICK K S. Angew. Chem., Int. Ed., 2017, 56(33):9860-9863.

    6. [6]

      TAO R, LIAO M, WANG Y X, WANG H, TAN Y H, QIN S Y, WEI W J, TANG C Z, LIANG X G, HAN Y F, LI X. Anal. Chem., 2022, 94(2):1308-1317.

    7. [7]

      FEDOROV F S, SOLOMATIN M A, UHLEMANN M, OSWALD S, KOLOSOV D A, MOROZOV A, VAREZHNIKOV A S, IVANOV M A, GREBENKO A K, SOMMER M, GLUKHOVA O E, NASIBULIN A G, SYSOEV V V. J. Mater. Chem. A, 2020, 8(15):7214-7228.

    8. [8]

      XU D, MUHAMMAD M, CHU L, SUN Q, SHEN C Y, HUANG Q. Anal. Chem., 2021, 93(23):8228-8237.

    9. [9]

      WANG Q Y, LI Y X, SERRANO-LOTINA A, HAN W, PORTELA R, WANG R X, BANARES M A. J. Am. Chem. Soc., 2021, 143(1):196-205.

    10. [10]

      LIU X Z, ZONG Z Y, XING M D, LIU X H, LI J, LIU D B. Nano Lett., 2021, 21(20):8817-8823.

    11. [11]

      CHEN J M, WANG J Q, GENG Y J, YUE J, SHI W, LIANG C Y, XU W Q, XU S P. ACS Sens., 2021, 6(4):1663-1670.

    12. [12]

      ZHOU Y, GU Q Y, QIU T Z, HE X, CHEN J Q, QI R J, HUANG R, ZHENG T T, TIAN Y. Angew. Chem., Int. Ed., 2021, 60(50):26260-26267.

    13. [13]

      QIAO X Z, SU B S, LIU C, SONG Q, LUO D, MO G, WANG T. Adv. Mater., 2018, 30(5):1702275.

    14. [14]

      QIAO X Z, CHEN X Y, HUANG C H, LI A L, LI X, LU Z L, WANG T. Angew. Chem., Int. Ed., 2019, 58(46):16523-16527.

    15. [15]

      FU J H, ZHONG Z, XIE D, GUO Y J, KONG D X, ZHAO Z X, ZHAO Z X, LI M. Angew. Chem., Int. Ed., 2020, 59(46):20489-20498.

    16. [16]

      YANG L, FENG J, WANG J N, GAO Z, XU J, MEI Y, SONG Y Y. Chin. Chem. Lett., 2022, 33(12):5169-5173.

  • 加载中
    1. [1]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    2. [2]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    3. [3]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    4. [4]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    5. [5]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    6. [6]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    7. [7]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    8. [8]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    9. [9]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    10. [10]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    11. [11]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    12. [12]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    13. [13]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    14. [14]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    15. [15]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    16. [16]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    17. [17]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    18. [18]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    19. [19]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    20. [20]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

Metrics
  • PDF Downloads(14)
  • Abstract views(1067)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return