Citation: XU Jing,  ZHENG Hong,  XIE Li-Fang,  LIN Wei-Qi,  GAO Jing,  XIE Ze-Zhong,  CHEN Hong-Ju,  ZENG Yong-Ming,  LIU Guo-Kun,  TIAN Zhong-Qun. Fast Detection of Trace Enrofloxacin and Ciprofloxacin in Chicken Meat by Surface-enhanced Raman Spectroscopy[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(3): 397-404. doi: 10.19756/j.issn.0253-3820.221227 shu

Fast Detection of Trace Enrofloxacin and Ciprofloxacin in Chicken Meat by Surface-enhanced Raman Spectroscopy

  • Corresponding author: LIU Guo-Kun, guokunliu@xmu.edu.cn
  • Received Date: 9 May 2022
    Revised Date: 14 October 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No. 41876099), the National Key Research & Development Program of China (No. 2018YFC1602600) and the Xiamen Science and Technology Project (No. 3502Z20183002).

  • With the increasing public concern on food quality, especially the zero-tolerance of illegal additives, the rapid qualitative and quantitative analysis of trace banned substances in food is in a prosperity stage in the field of food safety. Here, by combining with a self-developed rapid pretreatment kit, an on-site, rapid and sensitive detection strategy for trace antibiotics such as enrofloxacin and ciprofloxacin, two typical abused antibiotics in livestock and other industries, by surface-enhanced Raman spectroscopy (SERS) technique was developed. The abused quinolones residues in chicken meat (3 kinds of silky chicken meat and 2 kinds of plain chicken meat) were successfully screened by the developed SERS method, which showed an accurate qualification and a reliable quantitation in comparison with that by standard high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) technique. The proposed SERS-based strategy may provide a practical and simple method for rapid detection of other quinolones in real samples.
  • 加载中
    1. [1]

      BETITRA Y, TERESA V, MIGUEL V, ABDELAZIZ T. Asian Pac. J. Tropical Med., 2014, 7(6):462-467.

    2. [2]

      ZHANG L, ADDLA D, PONMANI J, WANG A, XIE D, WANG Y N, ZHANG S L, GENG R X, CAI G X, LI S, ZHOU C H. Eur. J. Med. Chem., 2016, 111:160-182.

    3. [3]

      WIMALASENA S H M P, SHIN G W, HOSSAIN S, HEO G J. J. Vet. Med. Sci., 2017, 79(5):921-926.

    4. [4]

      RAJALAKSHMI K, GUNASEKARAN S, KUMARESAN S. Indian J. Phys., 2014, 88(7):733-744.

    5. [5]

      WALSH C. Antibiotics:Actions, Origins, Resistance. Washington, D. C, ASM Press, 2003.

    6. [6]

      SEO K W, LEE Y J. Poult. Sci., 2019, 98(6):2700-2701.

    7. [7]

      CAMPOLIRICHARDS D M, MONK J P, PRICE A, BENFIELD P, TODD P A, WARD A. Drugs, 1988, 35(4):373-447.

    8. [8]

      MATHEW A G, CISSELL R, LIAMTHONG S. Foodborne Pathog. Dis., 2007, 4(2):115-133.

    9. [9]

      KOVALAKOVA P, CIZMAS L, MCDONALD T J, MARSALEK B, FENG M, SHARMA V K. Chemosphere, 2020, 251:126351.

    10. [10]

      SMITH K E, BESSER J M, HEDBERG C W, LEANO F T, BENDER J B, WICKLUND J H, JOHNSON B P, MOORE K A, OSTERHOLM M T. N. Engl. J. Med., 1999, 340(20):1525-1532.

    11. [11]

      Ellenbergs. Food and Drug Administration (FDA). Encyclopedia of Biostatistics, 2005.

    12. [12]

      European Commission. Regulation (EC) No 810/2009 of the European Parliament and of the Council. 2009:810.

    13. [13]

    14. [14]

      PEIXOTO P S, TÓTH I V, SEGUNDO M A, LIMA J L F C. Int. J. Environ. Anal. Chem., 2016, 96(2):185-202.

    15. [15]

      PÉREZ-FERNÁNDEZ V, DOMÍNGUEZ-VEGA E, CREGO A L, GARCÍA M Á, MARINA M L. Electrophoresis, 2012, 33(1):127-146.

    16. [16]

      BEIER R C, STANKER L H. Anal. Chim. Acta, 2001, 444(1):61-67.

    17. [17]

      LAN L, YAO Y, PING J, YING Y. Biosens. Bioelectron., 2017, 91:504-514.

    18. [18]

      LIU G, ZHENG H, LU J. Trends Environ. Anal. Chem., 2017, 16:16-23.

    19. [19]

      MENG L, ZHANG W, MENG P, ZHU B, ZHENG K. J. Chromatogr. B, 2015, 989:46-53.

    20. [20]

      GUIDI L R, SANTOS F A, RIBEIRO A C S R, FERNANDES C, SILVA L H M, GLORIA M B A. Food Chem., 2018, 245:1232-1238.

    21. [21]

      MARTINS M T, BARRETO F, HOFF R B, JANK L, ARSAND J B, FEIJO T C, SCHERMAN S E E. Food Addit. Contam., Part A, 2015, 32(3):333-341.

    22. [22]

      AMELIN V G, VOLKOVA N M, TIMOFEEV A A, TRET'YAKOV A V. J. Anal. Chem., 2015, 70(9):1076-1084.

    23. [23]

    24. [24]

      XIE W, SCHLÜCKER S. Rep. Prog. Phys., 2014, 77(11):116502.

    25. [25]

      CHOI I J. Nanoscience, 2016, 16(5):4274-4283.

    26. [26]

      WEI H, HOSSEIN ABTAHI S M, VIKESLAND P J. Environ. Sci.:Nano, 2015, 2(2):120-135.

    27. [27]

      GRAHAM D, MOSKOVITS M, TIAN Z Q. Chem. Soc. Rev., 2017, 46(13):3864-3865.

    28. [28]

      BARANSKA M. Optical Spectroscopy and Computational Methods in Biology and Medicine. Springer Netherlands, 2014.

    29. [29]

      SCHLUECKER S. Cheminform, 2014, 45(28):4756-4795.

    30. [30]

      LANGER J, JIMENEZ DE ABERASTURI D, AIZPURUA J, ALVAREZ-PUEBLA R A, AUGUIÉ B, BAUMBERG J J, BAZAN G C, BELL S E J, BOISEN A, BROLO A G, CHOO J, CIALLA-MAY D, DECKERT V, FABRIS L, FAULDS K, GARCÍA DE ABAJO F J, GOODACRE R, GRAHAM D, HAES A J, HAYNES C L, HUCK C, ITOH T, KÄLL M, KNEIPP J, KOTOV N A, KUANG H, LE RU E C, LEE H K, LI J F, LING X Y, MAIER S A, MAYERHÖFER T, MOSKOVITS M, MURAKOSHI K, NAM J M, NIE S, OZAKI Y, PASTORIZA-SANTOS I, PEREZ-JUSTE J, POPP J, PUCCI A, REICH S, REN B, SCHATZ G C, SHEGAI T, SCHLÜCKER S, TAY L L, THOMAS K G, TIAN Z Q, VAN DUYNE R P, VO-DINH T, WANG Y, WILLETS K A, XU C, XU H, XU Y, YAMAMOTO Y S, ZHAO B, LIZ-MARZÁN L M. ACS Nano, 2020, 14(1):28-117.

    31. [31]

      SHI Q, HUANG J, SUN Y, YIN M, HU M, HU X, ZHANG Z, ZHANG G. Spectrochim. Acta, Part A, 2018, 197:107-113.

    32. [32]

      TENG P, GAO D, YANG X, LUO M, KONG D, GAO S, LIU Z, LI Z, WEN X, YUAN L, LI K, BOWKETT M, COPNER N. Appl. Opt., 2021, 60(22):6659-6664.

    33. [33]

      ANDREOU C, MIRSAFAVI R, MOSKOVITS M, MEINHART C D. Analyst, 2015, 140(15):5003-5005.

    34. [34]

      XU Y, DU Y, LI Q, WANG X, PAN Y, ZHANG H, WU T, HU H. Food Anal. Methods, 2014, 7(6):1219-1228.

    35. [35]

      ZHANG Y, TENG Y, QIN Y, REN Z, WANG Z. Anal. Lett., 2020, 53(4):660-670.

    36. [36]

      ZHANG Y, HUANG Y, ZHAI F, DU R, LIU Y, LAI K. Food Chem., 2012, 135(2):845-850.

    37. [37]

      LEE P C, MEISEL D. J. Phys. Chem., 1982, 86(17):3391-3395.

    38. [38]

      FRENS G. Nat. Phys., 1973, 241(105):20-22.

    39. [39]

      ZHOU Z, ZHENG H, LIU T, XIE Z, LUO S, CHEN G, TIAN Z, LIU G. Anal. Chem., 2021, 93(24):8603-8612.

    40. [40]

      GARRIDO C, AGUAYO T, CLAVIJO E, GÓMEZ-JERIA J S, CAMPOS-VALLETTE M M. J. Raman Spectrosc., 2013, 44(8):1105-1110.

    41. [41]

      HAN S, HONG S, LI X. J. Colloid Interface Sci., 2013, 410:74-80.

    42. [42]

      ELIASSON C, LORéN A, ENGELBREKTSSON J, JOSEFSON M, ABRAHAMSSON J, JOHANSSON M, ABRAHAMSSON K. Anal. Chem., 2004, 61(4):755-760.

    43. [43]

      HIDI I J, HEIDLER J, WEBER K, CIALLA-MAY D, POPP J. Anal. Bioanal. Chem., 2016, 408(29):8393-8401.

    44. [44]

      LU J, CAI Z, ZOU Y, WU D, WANG A, CHANG J, WANG F, TIAN Z, LIU G. ACS Appl. Nano Mater., 2019, 2(10):6592-6601.

    45. [45]

      XIE L, LU J, LIU T, CHEN G, LIU G, REN B, TIAN Z. J. Phys. Chem. Lett., 2020, 11(3):1022-1029.

    46. [46]

      MARSICH L, BONIFACIO A, MANDAL S, KROL S, BELEITES C, SERGO V. Langmuir, 2012, 28(37):13166-13171.

    47. [47]

      ZHANG M, ZHOU Z, XU J, WANG W, PU S, HU W, LUO P, TIAN Z, GONG Z, LIU G. Spectrochim. Acta, Part A, 2022, 278:121365.

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    4. [4]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    5. [5]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    6. [6]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    7. [7]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    8. [8]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    12. [12]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    13. [13]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    14. [14]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    15. [15]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    16. [16]

      Sifang Zhang Yanli Tan Yu Tao Jiaoyan Zhao Haihong Zhu . Exploration and Practice of Ideological and Political Cases in the Course of Chemistry History and Methodology. University Chemistry, 2024, 39(10): 377-388. doi: 10.12461/PKU.DXHX202312067

    17. [17]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    18. [18]

      Jingfeng Lan Li Wu Guangnong Lu Liu Yang Xiaolong Li Xiangyang Xu Yongwen Shen E Yu . Application of 3E Method in the Negative List Management System in Teaching Laboratory. University Chemistry, 2024, 39(4): 54-61. doi: 10.3866/PKU.DXHX202310130

    19. [19]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    20. [20]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

Metrics
  • PDF Downloads(9)
  • Abstract views(707)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return