Citation: XIAO Shu-Fen,  FANG Zheng,  WANG Xu-Jun,  YANG Tian-Hui,  QING Tai-Ping. Aptamer-Mediated Fluorescent Copper Nanoclusters for Label-free and Rapid Detection of Isocarbophos[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(3): 364-372. doi: 10.19756/j.issn.0253-3820.221207 shu

Aptamer-Mediated Fluorescent Copper Nanoclusters for Label-free and Rapid Detection of Isocarbophos

  • Corresponding author: QING Tai-Ping, taiping_qing@163.com
  • Received Date: 27 April 2022
    Revised Date: 25 December 2022

    Fund Project: Supported by the Hunan Provincial Natural Science Foundation of China (No. 2022JJ30559), the Opening Foundation of State Key Laboratory of Chemo/Biosensing and Chemometrics (No. 2019008) and the Student’s Platform for Innovation and Entrepreneurship Training Program.

  • Based on the target recognition ability of aptamer and the excellent fluorescence performance of copper nanoclusters (CuNCs), a label-free fluorescent probe was developed for rapid detection of isocarbophos (ISO). In the absence of target molecule, the aptamer DNA and complementary DNA in the solution formed double-stranded DNA, which could mediate the synthesis of fluorescent CuNCs and showed a high fluorescence signal. When ISO was present, it would form aptamer-target complex, and released the complementary DNA. Free single stranded DNA could not mediate the synthesis of CuNCs, resulting in weak fluorescence signal in solution. Under the optimal conditions, the fluorescence inhibition rate of the system showed a linear relationship with the logarithm of concentration of ISO within the concentration range of 0.05-25 mg/L, and the detection limit was 47 μg/L (3σ). The method showed a high selectivity in detection of ISO with little interference. In addition, the probe was successfully used for detection of ISO in water samples with the recoveries of 80.3%-108.0%. These results indicated that the developed method could be used to effectively detect ISO residues in actual samples.
  • 加载中
    1. [1]

      WU L, CHANG H, MA X. Sci. Total Environ., 2017, 609:385-395.

    2. [2]

      EDDLESTON M. Annu. Rev. Pharmacol. Toxicol., 201959(1):341-360.

    3. [3]

      KAMEL A, BYRNE C, VIGO C, FERRARIO J, STAFFORD C, VERDIN G, SIEGELMAN F, KNIZNER S, HETRICK J. Water Res., 2008, 43(2):522-534.

    4. [4]

      EDDLESTON M, WOREK F, EYER P, THIERMANN H, VON MEYER L, JEGANATHAN K, SHERIFF M H R, DAWSON A H, BUCKLEY N A. QJM, 2009, 102(11):785-792.

    5. [5]

      TANKIEWICZ M, FENIK J, BIZIUK M. TrAC, Trends Anal. Chem., 2010, 29(9):1050-1063.

    6. [6]

      ARAGAY G, PINO F, MERKOÇI A. Chem. Rev., 2012, 112(10):5317-5338.

    7. [7]

      SHARMA D, NAGPAL A, PAKADE Y B, KATNORIA J K. Talanta, 2010, 82(4):1077-1089.

    8. [8]

      TAO C J, HU J Y, LI J Z, ZHENG S S, LIU W, LI C J. Bull. Environ. Contam. Toxicol., 2009, 82(1):111-115.

    9. [9]

      MARTıNEZ VIDAL J L, ARREBOLA F J, MATEU-SÁNCHEZ M. J. Chromatogr. A, 2002, 959(1-2):203-213.

    10. [10]

      ZHANG W, ASIRI A M, LIU D, DU D, LIN Y. TrAC, Trends Anal. Chem., 2014, 54:1-10.

    11. [11]

      HONDRED J A, BREGER J C, ALVES N J, TRAMMELL S A, WALPER S A, MEDINTZ I L, CLAUSSEN J C. ACS Appl. Mater. Interfaces, 2018, 10(13):11125-11134.

    12. [12]

      WANG L, SHI F, LI Y, SU X. Sens. Actuators, B, 2016, 222:945-951.

    13. [13]

      ZHAO H, JI X, WANG B, WANG N, LI X, NI R, REN J. Biosens. Bioelectron., 2015, 65:23-30.

    14. [14]

      SHABAN S M, KIM D H. Sensors, 2021, 21(3):979.

    15. [15]

    16. [16]

      ABNOUS K, DANESH N M, NAMEGHI M A, RAMEZANI M, ALIBOLANDI M, LAVAEE P, TAGHDISI S M. Biosens. Bioelectron., 2019, 144:111674.

    17. [17]

      LUO Y, YU H, ALKHAMIS O, LIU Y, LOU X, YU B, XIAO Y. Anal. Chem., 2019, 91(11):7199-7207.

    18. [18]

    19. [19]

      WANG R H, ZHU C L, WANG L L, XU L Z, WANG W L, YANG C, ZHANG Y. Talanta, 2019, 205:120094.

    20. [20]

      LIN B, YU Y, LI R, CAO Y, GUO M. Sens. Actuators, B, 2016, 229:100-109.

    21. [21]

    22. [22]

      HU X, LIU T, ZHUANG Y, WANG W, LI Y, FAN W, HUANG Y. TrAC, Trends Anal. Chem., 2016, 77:66-75.

    23. [23]

      LI H, LU Y, PANG J, SUN J, YANG F, WANG Z, LIU Y. Microchim. Acta, 2019, 186(12):862.

    24. [24]

      CHEN J, LIU J, FANG Z, ZENG L. Chem. Commun., 2012, 48(7):1057-1059.

    25. [25]

      ZHANG Z, LIU T, YUE C, WANG S, MA J, ZHOU T, WANG F, WANG X, ZHANG G. Colloids Surf., A, 2019, 579:123656.

    26. [26]

      HU R, LIU Y R, KONG R M, DONOVAN M J, ZHANG X B, TAN W, SHEN G L, YU R Q. Biosens. Bioelectron., 2013, 42:31-35.

    27. [27]

      QING T, LONG C, WANG X, ZHANG K, ZHANG P, FENG B. Microchim. Acta, 2019, 186(4):248.

    28. [28]

      WANG L, LIU X, ZHANG Q, ZHANG C, LIU Y, TU K, TU J. Biotechnol. Lett., 2012, 34(5):869-874.

    29. [29]

      QING T, QING Z, MAO Z, HE X, XU F, WEN L, HE D, SHI H, WANG K. RSC Adv., 2014, 4(105):61092-61095.

    30. [30]

      QING Z, HE X, HE D, WANG K, XU F, QING T, YANG X. Angew. Chem. Int. Ed., 2013, 52(37):9719-9722.

    31. [31]

    32. [32]

      LIU B, TANG Y, YANG Y, WU Y. Food Control, 2021, 129:108208.

    33. [33]

    34. [34]

      LIU D L, LI Y, SUN R, XU J Y, CHEN Y, SUN C Y. J. Nanosci. Nanotechnol., 2020, 20(4):2114-2121.

    35. [35]

      CHEN H, WU Y, YANG W, ZHAN S, QIU S, ZHOU P. Sens. Actuators, B, 2017, 243:445-453.

    36. [36]

      FAN K, YANG R, ZHAO Y, ZANG C, MIAO X, QU B, LU L. Sens. Actuators, B, 2020, 321:128515.

  • 加载中
    1. [1]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    2. [2]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    3. [3]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    4. [4]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    5. [5]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    6. [6]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    7. [7]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    8. [8]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    9. [9]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    10. [10]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    11. [11]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    12. [12]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    13. [13]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    14. [14]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    15. [15]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    16. [16]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    17. [17]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    20. [20]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

Metrics
  • PDF Downloads(12)
  • Abstract views(542)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return